Loading…

Regularized Partial and/or Constrained Redundancy Analysis

Methods of incorporating a ridge type of regularization into partial redundancy analysis (PRA), constrained redundancy analysis (CRA), and partial and constrained redundancy analysis (PCRA) were discussed. The usefulness of ridge estimation in reducing mean square error (MSE) has been recognized in...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2008-12, Vol.73 (4), p.671-690
Main Authors: Takane, Yoshio, Jung, Sunho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43
cites cdi_FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43
container_end_page 690
container_issue 4
container_start_page 671
container_title Psychometrika
container_volume 73
creator Takane, Yoshio
Jung, Sunho
description Methods of incorporating a ridge type of regularization into partial redundancy analysis (PRA), constrained redundancy analysis (CRA), and partial and constrained redundancy analysis (PCRA) were discussed. The usefulness of ridge estimation in reducing mean square error (MSE) has been recognized in multiple regression analysis for some time, especially when predictor variables are nearly collinear, and the ordinary least squares estimator is poorly determined. The ridge estimation method was extended to PRA, CRA, and PCRA, where the reduced rank ridge estimates of regression coefficients were obtained by minimizing the ridge least squares criterion. It was shown that in all cases they could be obtained in closed form for a fixed value of ridge parameter. An optimal value of the ridge parameter is found by G -fold cross validation. Illustrative examples were given to demonstrate the usefulness of the method in practical data analysis situations.
doi_str_mv 10.1007/s11336-008-9067-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21269090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ822829</ericid><sourcerecordid>21269090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43</originalsourceid><addsrcrecordid>eNp1kEtLxDAQgIMouD5-gOChCHqrTjJ9JN5kWV8Iiug5TJNUunRbTbaH-uvNUlEQPOXwfTMZPsaOOJxzgPIicI5YpAAyVVCU6bjFZlwWkIKSsM1mAIgpcoG7bC-EJQAoLuWMXT67t6El33w6mzyRXzfUJtTZi94n874La09NF9Gzs0NnqTNjctVRO4YmHLCdmtrgDr_fffZ6vXiZ36YPjzd386uH1GQFrlNTZzyH2mENVYmEIMqMCCtDRlq0UHFl87zGzJLMK6OU4cqZrKxk4URFGe6zs2nvu-8_BhfWetUE49qWOtcPQQsuCgUKonjyR1z2g4_XRgdR5DFQESU-Scb3IXhX63ffrMiPmoPepNRTSh1T6k1KPcaZ0-_FFAy1tY8dmvAzKDhgCVJG73jynG_MD17cSyGkUBGLCYeIujfnf-_7_-8vIOmM1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233253366</pqid></control><display><type>article</type><title>Regularized Partial and/or Constrained Redundancy Analysis</title><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Springer Link</source><source>ERIC</source><source>Education Collection</source><creator>Takane, Yoshio ; Jung, Sunho</creator><creatorcontrib>Takane, Yoshio ; Jung, Sunho</creatorcontrib><description>Methods of incorporating a ridge type of regularization into partial redundancy analysis (PRA), constrained redundancy analysis (CRA), and partial and constrained redundancy analysis (PCRA) were discussed. The usefulness of ridge estimation in reducing mean square error (MSE) has been recognized in multiple regression analysis for some time, especially when predictor variables are nearly collinear, and the ordinary least squares estimator is poorly determined. The ridge estimation method was extended to PRA, CRA, and PCRA, where the reduced rank ridge estimates of regression coefficients were obtained by minimizing the ridge least squares criterion. It was shown that in all cases they could be obtained in closed form for a fixed value of ridge parameter. An optimal value of the ridge parameter is found by G -fold cross validation. Illustrative examples were given to demonstrate the usefulness of the method in practical data analysis situations.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-008-9067-y</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Assessment ; Behavioral Science and Psychology ; Bias ; Biological and medical sciences ; Cross Validation ; Data Analysis ; Decomposition ; Estimates ; Expected values ; Fundamental and applied biological sciences. Psychology ; Humanities ; Hypotheses ; Law ; Least Squares Statistics ; Measurement Techniques ; Multiple Regression Analysis ; Predictor Variables ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics ; Psychometrics. Statistics. Methodology ; Redundancy ; Redundancy Analysis ; Statistical Theory and Methods ; Statistics for Social Sciences ; Statistics. Mathematics ; Testing and Evaluation</subject><ispartof>Psychometrika, 2008-12, Vol.73 (4), p.671-690</ispartof><rights>The Psychometric Society 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43</citedby><cites>FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/233253366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/233253366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21378,21394,27924,27925,33611,33612,33877,33878,36060,36061,43733,43880,44363,74221,74397,74895</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ822829$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21037088$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Takane, Yoshio</creatorcontrib><creatorcontrib>Jung, Sunho</creatorcontrib><title>Regularized Partial and/or Constrained Redundancy Analysis</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><description>Methods of incorporating a ridge type of regularization into partial redundancy analysis (PRA), constrained redundancy analysis (CRA), and partial and constrained redundancy analysis (PCRA) were discussed. The usefulness of ridge estimation in reducing mean square error (MSE) has been recognized in multiple regression analysis for some time, especially when predictor variables are nearly collinear, and the ordinary least squares estimator is poorly determined. The ridge estimation method was extended to PRA, CRA, and PCRA, where the reduced rank ridge estimates of regression coefficients were obtained by minimizing the ridge least squares criterion. It was shown that in all cases they could be obtained in closed form for a fixed value of ridge parameter. An optimal value of the ridge parameter is found by G -fold cross validation. Illustrative examples were given to demonstrate the usefulness of the method in practical data analysis situations.</description><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Cross Validation</subject><subject>Data Analysis</subject><subject>Decomposition</subject><subject>Estimates</subject><subject>Expected values</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humanities</subject><subject>Hypotheses</subject><subject>Law</subject><subject>Least Squares Statistics</subject><subject>Measurement Techniques</subject><subject>Multiple Regression Analysis</subject><subject>Predictor Variables</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Redundancy</subject><subject>Redundancy Analysis</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Statistics. Mathematics</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0C</sourceid><sourceid>M0P</sourceid><recordid>eNp1kEtLxDAQgIMouD5-gOChCHqrTjJ9JN5kWV8Iiug5TJNUunRbTbaH-uvNUlEQPOXwfTMZPsaOOJxzgPIicI5YpAAyVVCU6bjFZlwWkIKSsM1mAIgpcoG7bC-EJQAoLuWMXT67t6El33w6mzyRXzfUJtTZi94n874La09NF9Gzs0NnqTNjctVRO4YmHLCdmtrgDr_fffZ6vXiZ36YPjzd386uH1GQFrlNTZzyH2mENVYmEIMqMCCtDRlq0UHFl87zGzJLMK6OU4cqZrKxk4URFGe6zs2nvu-8_BhfWetUE49qWOtcPQQsuCgUKonjyR1z2g4_XRgdR5DFQESU-Scb3IXhX63ffrMiPmoPepNRTSh1T6k1KPcaZ0-_FFAy1tY8dmvAzKDhgCVJG73jynG_MD17cSyGkUBGLCYeIujfnf-_7_-8vIOmM1g</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Takane, Yoshio</creator><creator>Jung, Sunho</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20081201</creationdate><title>Regularized Partial and/or Constrained Redundancy Analysis</title><author>Takane, Yoshio ; Jung, Sunho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Cross Validation</topic><topic>Data Analysis</topic><topic>Decomposition</topic><topic>Estimates</topic><topic>Expected values</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humanities</topic><topic>Hypotheses</topic><topic>Law</topic><topic>Least Squares Statistics</topic><topic>Measurement Techniques</topic><topic>Multiple Regression Analysis</topic><topic>Predictor Variables</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Redundancy</topic><topic>Redundancy Analysis</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Statistics. Mathematics</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takane, Yoshio</creatorcontrib><creatorcontrib>Jung, Sunho</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takane, Yoshio</au><au>Jung, Sunho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ822829</ericid><atitle>Regularized Partial and/or Constrained Redundancy Analysis</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>73</volume><issue>4</issue><spage>671</spage><epage>690</epage><pages>671-690</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>Methods of incorporating a ridge type of regularization into partial redundancy analysis (PRA), constrained redundancy analysis (CRA), and partial and constrained redundancy analysis (PCRA) were discussed. The usefulness of ridge estimation in reducing mean square error (MSE) has been recognized in multiple regression analysis for some time, especially when predictor variables are nearly collinear, and the ordinary least squares estimator is poorly determined. The ridge estimation method was extended to PRA, CRA, and PCRA, where the reduced rank ridge estimates of regression coefficients were obtained by minimizing the ridge least squares criterion. It was shown that in all cases they could be obtained in closed form for a fixed value of ridge parameter. An optimal value of the ridge parameter is found by G -fold cross validation. Illustrative examples were given to demonstrate the usefulness of the method in practical data analysis situations.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s11336-008-9067-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2008-12, Vol.73 (4), p.671-690
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_miscellaneous_21269090
source Social Science Premium Collection; ABI/INFORM Global; Springer Link; ERIC; Education Collection
subjects Assessment
Behavioral Science and Psychology
Bias
Biological and medical sciences
Cross Validation
Data Analysis
Decomposition
Estimates
Expected values
Fundamental and applied biological sciences. Psychology
Humanities
Hypotheses
Law
Least Squares Statistics
Measurement Techniques
Multiple Regression Analysis
Predictor Variables
Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics
Psychometrics. Statistics. Methodology
Redundancy
Redundancy Analysis
Statistical Theory and Methods
Statistics for Social Sciences
Statistics. Mathematics
Testing and Evaluation
title Regularized Partial and/or Constrained Redundancy Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Partial%20and/or%20Constrained%20Redundancy%20Analysis&rft.jtitle=Psychometrika&rft.au=Takane,%20Yoshio&rft.date=2008-12-01&rft.volume=73&rft.issue=4&rft.spage=671&rft.epage=690&rft.pages=671-690&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/s11336-008-9067-y&rft_dat=%3Cproquest_cross%3E21269090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-cf4150fe3f0b73a30274aa3bcac8d3d0b19d55f34da85bc99c19ec47b86e2ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=233253366&rft_id=info:pmid/&rft_ericid=EJ822829&rfr_iscdi=true