Loading…
Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models
Abstract Background Several population pharmacokinetic (PopPK) models for meropenem dosing in ICU patients are available. It is not known to what extent these models can predict meropenem concentrations in an independent validation dataset when meropenem is infused continuously. Patients and methods...
Saved in:
Published in: | Journal of antimicrobial chemotherapy 2019-02, Vol.74 (2), p.432-441 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3 |
container_end_page | 441 |
container_issue | 2 |
container_start_page | 432 |
container_title | Journal of antimicrobial chemotherapy |
container_volume | 74 |
creator | Dhaese, Sofie A M Farkas, Andras Colin, Pieter Lipman, Jeffrey Stove, Veronique Verstraete, Alain G Roberts, Jason A De Waele, Jan J |
description | Abstract
Background
Several population pharmacokinetic (PopPK) models for meropenem dosing in ICU patients are available. It is not known to what extent these models can predict meropenem concentrations in an independent validation dataset when meropenem is infused continuously.
Patients and methods
A PopPK model was developed with concentration–time data collected from routine care of 21 ICU patients (38 samples) receiving continuous infusion meropenem. The predictability of this model and seven other published PopPK models was studied using an independent dataset that consisted of 47 ICU patients (161 samples) receiving continuous infusion meropenem. A statistical comparison of imprecision (mean square prediction error) and bias (mean prediction error) was conducted.
Results
A one-compartment model with linear elimination and creatinine clearance as a covariate of clearance best described our data. The mean ± SD parameter estimate for CL was 9.89 ± 3.71 L/h. The estimated volume of distribution was 48.1 L. The different PopPK models showed a bias in predicting serum concentrations from the validation dataset that ranged from −8.76 to 7.06 mg/L. Imprecision ranged from 9.90 to 42.1 mg/L.
Conclusions
Published PopPK models for meropenem vary considerably in their predictive performance when validated in an external dataset of ICU patients receiving continuous infusion meropenem. It is necessary to validate PopPK models in a target population before implementing them in a therapeutic drug monitoring program aimed at optimizing meropenem dosing. |
doi_str_mv | 10.1093/jac/dky434 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127198075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jac/dky434</oup_id><sourcerecordid>2127198075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhonRtLe1mz5Aw8bENBkLAwMz3ZmmVZMmutD1hGHO9NIygMDc5D6nLyQ3U12Y1BWE8_GdAz9C55R8oKRjV49KX41Pe874K7ShXJCqJh19jTaEkaaSvGHH6CSlR0KIaER7hI4ZYVJQwjbo1zcfFquy8Q6HrYqz0v7JOMhGJ6zciGGn7LLW_YTzFnCIMBqdza5sIU6-3HEaDtV_BHj2I9iEjcM6mnKgrN1jYy0ORQguJxxBg9kZ94C1d9m4xS8HflrSoeEM0QdwMF9jVYA5qGjSOgiYh21-oeFb9GZSNsHZ83qKftzdfr_5XN1__fTl5uN9pVnDcqXLf3S8Ew3hg5zqTtZS1YMQop5aLjmlRAohh3FoCWtBdopNI5eSsYI1Sit2it6v3hD9zwVS7meTNFirHJR39DWtJe1aIpuCXq6ojj6lCFMfoplV3PeU9IcQ-xJiv4ZY4Itn7zLMMP5F_6RWgHcr4JfwP9FvJoCrsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127198075</pqid></control><display><type>article</type><title>Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models</title><source>Oxford Journals Online</source><creator>Dhaese, Sofie A M ; Farkas, Andras ; Colin, Pieter ; Lipman, Jeffrey ; Stove, Veronique ; Verstraete, Alain G ; Roberts, Jason A ; De Waele, Jan J</creator><creatorcontrib>Dhaese, Sofie A M ; Farkas, Andras ; Colin, Pieter ; Lipman, Jeffrey ; Stove, Veronique ; Verstraete, Alain G ; Roberts, Jason A ; De Waele, Jan J</creatorcontrib><description>Abstract
Background
Several population pharmacokinetic (PopPK) models for meropenem dosing in ICU patients are available. It is not known to what extent these models can predict meropenem concentrations in an independent validation dataset when meropenem is infused continuously.
Patients and methods
A PopPK model was developed with concentration–time data collected from routine care of 21 ICU patients (38 samples) receiving continuous infusion meropenem. The predictability of this model and seven other published PopPK models was studied using an independent dataset that consisted of 47 ICU patients (161 samples) receiving continuous infusion meropenem. A statistical comparison of imprecision (mean square prediction error) and bias (mean prediction error) was conducted.
Results
A one-compartment model with linear elimination and creatinine clearance as a covariate of clearance best described our data. The mean ± SD parameter estimate for CL was 9.89 ± 3.71 L/h. The estimated volume of distribution was 48.1 L. The different PopPK models showed a bias in predicting serum concentrations from the validation dataset that ranged from −8.76 to 7.06 mg/L. Imprecision ranged from 9.90 to 42.1 mg/L.
Conclusions
Published PopPK models for meropenem vary considerably in their predictive performance when validated in an external dataset of ICU patients receiving continuous infusion meropenem. It is necessary to validate PopPK models in a target population before implementing them in a therapeutic drug monitoring program aimed at optimizing meropenem dosing.</description><identifier>ISSN: 0305-7453</identifier><identifier>EISSN: 1460-2091</identifier><identifier>DOI: 10.1093/jac/dky434</identifier><identifier>PMID: 30376103</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adult ; Aged ; Anti-Bacterial Agents - administration & dosage ; Anti-Bacterial Agents - pharmacokinetics ; Critical Illness ; Drug Monitoring ; Female ; Humans ; Infusions, Intravenous ; Male ; Meropenem - administration & dosage ; Meropenem - pharmacokinetics ; Middle Aged ; Models, Biological</subject><ispartof>Journal of antimicrobial chemotherapy, 2019-02, Vol.74 (2), p.432-441</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3</citedby><cites>FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3</cites><orcidid>0000-0002-0956-3315 ; 0000-0001-6218-435X ; 0000-0002-2252-7167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30376103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhaese, Sofie A M</creatorcontrib><creatorcontrib>Farkas, Andras</creatorcontrib><creatorcontrib>Colin, Pieter</creatorcontrib><creatorcontrib>Lipman, Jeffrey</creatorcontrib><creatorcontrib>Stove, Veronique</creatorcontrib><creatorcontrib>Verstraete, Alain G</creatorcontrib><creatorcontrib>Roberts, Jason A</creatorcontrib><creatorcontrib>De Waele, Jan J</creatorcontrib><title>Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models</title><title>Journal of antimicrobial chemotherapy</title><addtitle>J Antimicrob Chemother</addtitle><description>Abstract
Background
Several population pharmacokinetic (PopPK) models for meropenem dosing in ICU patients are available. It is not known to what extent these models can predict meropenem concentrations in an independent validation dataset when meropenem is infused continuously.
Patients and methods
A PopPK model was developed with concentration–time data collected from routine care of 21 ICU patients (38 samples) receiving continuous infusion meropenem. The predictability of this model and seven other published PopPK models was studied using an independent dataset that consisted of 47 ICU patients (161 samples) receiving continuous infusion meropenem. A statistical comparison of imprecision (mean square prediction error) and bias (mean prediction error) was conducted.
Results
A one-compartment model with linear elimination and creatinine clearance as a covariate of clearance best described our data. The mean ± SD parameter estimate for CL was 9.89 ± 3.71 L/h. The estimated volume of distribution was 48.1 L. The different PopPK models showed a bias in predicting serum concentrations from the validation dataset that ranged from −8.76 to 7.06 mg/L. Imprecision ranged from 9.90 to 42.1 mg/L.
Conclusions
Published PopPK models for meropenem vary considerably in their predictive performance when validated in an external dataset of ICU patients receiving continuous infusion meropenem. It is necessary to validate PopPK models in a target population before implementing them in a therapeutic drug monitoring program aimed at optimizing meropenem dosing.</description><subject>Adult</subject><subject>Aged</subject><subject>Anti-Bacterial Agents - administration & dosage</subject><subject>Anti-Bacterial Agents - pharmacokinetics</subject><subject>Critical Illness</subject><subject>Drug Monitoring</subject><subject>Female</subject><subject>Humans</subject><subject>Infusions, Intravenous</subject><subject>Male</subject><subject>Meropenem - administration & dosage</subject><subject>Meropenem - pharmacokinetics</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><issn>0305-7453</issn><issn>1460-2091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcFuFSEUhonRtLe1mz5Aw8bENBkLAwMz3ZmmVZMmutD1hGHO9NIygMDc5D6nLyQ3U12Y1BWE8_GdAz9C55R8oKRjV49KX41Pe874K7ShXJCqJh19jTaEkaaSvGHH6CSlR0KIaER7hI4ZYVJQwjbo1zcfFquy8Q6HrYqz0v7JOMhGJ6zciGGn7LLW_YTzFnCIMBqdza5sIU6-3HEaDtV_BHj2I9iEjcM6mnKgrN1jYy0ORQguJxxBg9kZ94C1d9m4xS8HflrSoeEM0QdwMF9jVYA5qGjSOgiYh21-oeFb9GZSNsHZ83qKftzdfr_5XN1__fTl5uN9pVnDcqXLf3S8Ew3hg5zqTtZS1YMQop5aLjmlRAohh3FoCWtBdopNI5eSsYI1Sit2it6v3hD9zwVS7meTNFirHJR39DWtJe1aIpuCXq6ojj6lCFMfoplV3PeU9IcQ-xJiv4ZY4Itn7zLMMP5F_6RWgHcr4JfwP9FvJoCrsQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Dhaese, Sofie A M</creator><creator>Farkas, Andras</creator><creator>Colin, Pieter</creator><creator>Lipman, Jeffrey</creator><creator>Stove, Veronique</creator><creator>Verstraete, Alain G</creator><creator>Roberts, Jason A</creator><creator>De Waele, Jan J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0956-3315</orcidid><orcidid>https://orcid.org/0000-0001-6218-435X</orcidid><orcidid>https://orcid.org/0000-0002-2252-7167</orcidid></search><sort><creationdate>20190201</creationdate><title>Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models</title><author>Dhaese, Sofie A M ; Farkas, Andras ; Colin, Pieter ; Lipman, Jeffrey ; Stove, Veronique ; Verstraete, Alain G ; Roberts, Jason A ; De Waele, Jan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Anti-Bacterial Agents - administration & dosage</topic><topic>Anti-Bacterial Agents - pharmacokinetics</topic><topic>Critical Illness</topic><topic>Drug Monitoring</topic><topic>Female</topic><topic>Humans</topic><topic>Infusions, Intravenous</topic><topic>Male</topic><topic>Meropenem - administration & dosage</topic><topic>Meropenem - pharmacokinetics</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhaese, Sofie A M</creatorcontrib><creatorcontrib>Farkas, Andras</creatorcontrib><creatorcontrib>Colin, Pieter</creatorcontrib><creatorcontrib>Lipman, Jeffrey</creatorcontrib><creatorcontrib>Stove, Veronique</creatorcontrib><creatorcontrib>Verstraete, Alain G</creatorcontrib><creatorcontrib>Roberts, Jason A</creatorcontrib><creatorcontrib>De Waele, Jan J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of antimicrobial chemotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhaese, Sofie A M</au><au>Farkas, Andras</au><au>Colin, Pieter</au><au>Lipman, Jeffrey</au><au>Stove, Veronique</au><au>Verstraete, Alain G</au><au>Roberts, Jason A</au><au>De Waele, Jan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models</atitle><jtitle>Journal of antimicrobial chemotherapy</jtitle><addtitle>J Antimicrob Chemother</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>74</volume><issue>2</issue><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>0305-7453</issn><eissn>1460-2091</eissn><abstract>Abstract
Background
Several population pharmacokinetic (PopPK) models for meropenem dosing in ICU patients are available. It is not known to what extent these models can predict meropenem concentrations in an independent validation dataset when meropenem is infused continuously.
Patients and methods
A PopPK model was developed with concentration–time data collected from routine care of 21 ICU patients (38 samples) receiving continuous infusion meropenem. The predictability of this model and seven other published PopPK models was studied using an independent dataset that consisted of 47 ICU patients (161 samples) receiving continuous infusion meropenem. A statistical comparison of imprecision (mean square prediction error) and bias (mean prediction error) was conducted.
Results
A one-compartment model with linear elimination and creatinine clearance as a covariate of clearance best described our data. The mean ± SD parameter estimate for CL was 9.89 ± 3.71 L/h. The estimated volume of distribution was 48.1 L. The different PopPK models showed a bias in predicting serum concentrations from the validation dataset that ranged from −8.76 to 7.06 mg/L. Imprecision ranged from 9.90 to 42.1 mg/L.
Conclusions
Published PopPK models for meropenem vary considerably in their predictive performance when validated in an external dataset of ICU patients receiving continuous infusion meropenem. It is necessary to validate PopPK models in a target population before implementing them in a therapeutic drug monitoring program aimed at optimizing meropenem dosing.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30376103</pmid><doi>10.1093/jac/dky434</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0956-3315</orcidid><orcidid>https://orcid.org/0000-0001-6218-435X</orcidid><orcidid>https://orcid.org/0000-0002-2252-7167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-7453 |
ispartof | Journal of antimicrobial chemotherapy, 2019-02, Vol.74 (2), p.432-441 |
issn | 0305-7453 1460-2091 |
language | eng |
recordid | cdi_proquest_miscellaneous_2127198075 |
source | Oxford Journals Online |
subjects | Adult Aged Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - pharmacokinetics Critical Illness Drug Monitoring Female Humans Infusions, Intravenous Male Meropenem - administration & dosage Meropenem - pharmacokinetics Middle Aged Models, Biological |
title | Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: a comparison of eight pharmacokinetic models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20pharmacokinetics%20and%20evaluation%20of%20the%20predictive%20performance%20of%20pharmacokinetic%20models%20in%20critically%20ill%20patients%20receiving%20continuous%20infusion%20meropenem:%20a%20comparison%20of%20eight%20pharmacokinetic%20models&rft.jtitle=Journal%20of%20antimicrobial%20chemotherapy&rft.au=Dhaese,%20Sofie%20A%20M&rft.date=2019-02-01&rft.volume=74&rft.issue=2&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=0305-7453&rft.eissn=1460-2091&rft_id=info:doi/10.1093/jac/dky434&rft_dat=%3Cproquest_cross%3E2127198075%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-c0009496504b7f29727a2b6662f84741107667bdb8038e79a3fd477337a25aca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2127198075&rft_id=info:pmid/30376103&rft_oup_id=10.1093/jac/dky434&rfr_iscdi=true |