Loading…

Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation

We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79‐4) cells. Phloroglucinol was found to scavenge 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical, hydrogen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular biochemistry 2006-02, Vol.97 (3), p.609-620
Main Authors: Kang, Kyoung Ah, Lee, Kyoung Hwa, Chae, Sungwook, Zhang, Rui, Jung, Myung Sun, Ham, Young Min, Baik, Jong Seok, Lee, Nam Ho, Hyun, Jin Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79‐4) cells. Phloroglucinol was found to scavenge 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical, hydrogen peroxide (H2O2), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H2O2 induced apoptotic cells formation in V79‐4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H2O2 induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79‐4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. © 2005 Wiley‐Liss, Inc.
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.20668