Loading…
Biodegradation of methyl tert-butyl ether as a sole carbon source by aerobic granules cultivated in a sequencing batch reactor
Aerobic granules efficient at degrading methyl tert -butyl ether (MTBE) were successfully developed in a well-mixed sequencing batch reactor (SBR). Treatment efficiency of MTBE in the reactor during the stable operations exceeded 99.8%, and effluent MTBE was consistently below 800 μg/L. The specific...
Saved in:
Published in: | Bioprocess and biosystems engineering 2008-10, Vol.31 (6), p.527-534 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aerobic granules efficient at degrading methyl
tert
-butyl ether (MTBE) were successfully developed in a well-mixed sequencing batch reactor (SBR). Treatment efficiency of MTBE in the reactor during the stable operations exceeded 99.8%, and effluent MTBE was consistently below 800 μg/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentrations from 25 to 400 mg/L, peaked at 18.2 mg-MTBE/g-VSS h, and declined with further increases in MTBE concentration as substrate inhibition effects became significant. There was a good fit between these biodegradation data and the Haldane equation (
R
2
= 0.976). Microbial community DNA profiling was carried out using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction amplified 16S rDNA. The aerobic granule was found to contain a wide diversity of microorganisms. More than 70% similarity among the samples in the time period examined indicated a highly stable microbial community as the reactor reached the stable operation. |
---|---|
ISSN: | 1615-7591 1615-7605 |
DOI: | 10.1007/s00449-007-0193-1 |