Loading…

How Molecular Crowding Differs from Macromolecular Crowding: A Femtosecond Mid-Infrared Pump–Probe Study

Crowding is an inherent property of living systems in which biochemical processes occur in highly concentrated solutions of various finite-sized species of both low (molecular crowding) and high (macromolecular crowding) molecular weights. Is molecular crowding fundamentally different from macromole...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2018-11, Vol.9 (22), p.6584-6592
Main Authors: Verma, Pramod Kumar, Kundu, Achintya, Cho, Minhaeng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crowding is an inherent property of living systems in which biochemical processes occur in highly concentrated solutions of various finite-sized species of both low (molecular crowding) and high (macromolecular crowding) molecular weights. Is molecular crowding fundamentally different from macromolecular crowding? To answer this question, we use a femtosecond mid-infrared pump–probe technique with three vibrational probes in molecular (diethylene glycol) and macromolecular (polyethylene glycol) solutions. In less crowded media, both molecular and macromolecular crowders fail to affect the dynamics of interstitial bulk-like water molecules and those at the crowder/water interface. In highly crowded media, interstitial water dynamics strongly depends on molecular crowding, but macromolecular crowding does not alter the bulk-like hydration dynamics and has a modest crowding effect on water at the crowder/water interface. The results of this study provide a molecular level understanding of the structural and dynamic changes to water and the water-mediated cross-linking of crowders.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b03153