Loading…

Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations

Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2018-11, Vol.58 (11), p.2224-2238
Main Authors: Kurczab, Rafał, Śliwa, Paweł, Rataj, Krzysztof, Kafel, Rafał, Bojarski, Andrzej J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833
cites cdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833
container_end_page 2238
container_issue 11
container_start_page 2224
container_title Journal of chemical information and modeling
container_volume 58
creator Kurczab, Rafał
Śliwa, Paweł
Rataj, Krzysztof
Kafel, Rafał
Bojarski, Andrzej J
description Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.
doi_str_mv 10.1021/acs.jcim.8b00266
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127950739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127950739</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMotlb3rmTAjQtbbyYz-Vlq8adQUGgFd0NmktQp81OTqdid7-DCV_F5fACfwdS2LgRXOTl8597LQegQQw9DiM9k5nrTLC97PAUIKd1CbRxHoisoPGxvdCxoC-05NwUgRNBwF7UIkBhDTNtIjmTRBBc2VxMd5FUwzCeyUp-vb3e2brQ3-nU5K_SLdl_vH6OFa3QpmzwLxo-6ttorWQQ-EIwab7vVf1A9ay8n3qkrt492jCycPli_HXR_dTnu33SHt9eD_vmwKyPATZdRIbWiaaRYJNJMKQ2KK8pEio00cQhguDTUsDQTwEJFKOORMZylhDPDCemgk9Xcma2f5v6ApMxdpotCVrqeuyTEIRMxMCI8evwHndZzW_nrPEV9MRHn3FOwojJbO2e1SWY2L6VdJBiSZf2Jrz9Z1p-s6_eRo_XgeVpq9RvY9O2B0xXwE90s_XfeN166lHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161054888</pqid></control><display><type>article</type><title>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kurczab, Rafał ; Śliwa, Paweł ; Rataj, Krzysztof ; Kafel, Rafał ; Bojarski, Andrzej J</creator><creatorcontrib>Kurczab, Rafał ; Śliwa, Paweł ; Rataj, Krzysztof ; Kafel, Rafał ; Bojarski, Andrzej J</creatorcontrib><description>Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00266</identifier><identifier>PMID: 30351056</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bridges ; Coordination compounds ; Data banks ; Decomposition ; Ligands ; Molecular interactions ; Organic chemistry ; Proteins ; Quantum chemistry ; Salt ; Statistical analysis</subject><ispartof>Journal of chemical information and modeling, 2018-11, Vol.58 (11), p.2224-2238</ispartof><rights>Copyright American Chemical Society Nov 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</citedby><cites>FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</cites><orcidid>0000-0002-9555-3905 ; 0000-0001-9662-8481 ; 0000-0003-1417-6333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurczab, Rafał</creatorcontrib><creatorcontrib>Śliwa, Paweł</creatorcontrib><creatorcontrib>Rataj, Krzysztof</creatorcontrib><creatorcontrib>Kafel, Rafał</creatorcontrib><creatorcontrib>Bojarski, Andrzej J</creatorcontrib><title>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.</description><subject>Bridges</subject><subject>Coordination compounds</subject><subject>Data banks</subject><subject>Decomposition</subject><subject>Ligands</subject><subject>Molecular interactions</subject><subject>Organic chemistry</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Salt</subject><subject>Statistical analysis</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMotlb3rmTAjQtbbyYz-Vlq8adQUGgFd0NmktQp81OTqdid7-DCV_F5fACfwdS2LgRXOTl8597LQegQQw9DiM9k5nrTLC97PAUIKd1CbRxHoisoPGxvdCxoC-05NwUgRNBwF7UIkBhDTNtIjmTRBBc2VxMd5FUwzCeyUp-vb3e2brQ3-nU5K_SLdl_vH6OFa3QpmzwLxo-6ttorWQQ-EIwab7vVf1A9ay8n3qkrt492jCycPli_HXR_dTnu33SHt9eD_vmwKyPATZdRIbWiaaRYJNJMKQ2KK8pEio00cQhguDTUsDQTwEJFKOORMZylhDPDCemgk9Xcma2f5v6ApMxdpotCVrqeuyTEIRMxMCI8evwHndZzW_nrPEV9MRHn3FOwojJbO2e1SWY2L6VdJBiSZf2Jrz9Z1p-s6_eRo_XgeVpq9RvY9O2B0xXwE90s_XfeN166lHc</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Kurczab, Rafał</creator><creator>Śliwa, Paweł</creator><creator>Rataj, Krzysztof</creator><creator>Kafel, Rafał</creator><creator>Bojarski, Andrzej J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9555-3905</orcidid><orcidid>https://orcid.org/0000-0001-9662-8481</orcidid><orcidid>https://orcid.org/0000-0003-1417-6333</orcidid></search><sort><creationdate>20181126</creationdate><title>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</title><author>Kurczab, Rafał ; Śliwa, Paweł ; Rataj, Krzysztof ; Kafel, Rafał ; Bojarski, Andrzej J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bridges</topic><topic>Coordination compounds</topic><topic>Data banks</topic><topic>Decomposition</topic><topic>Ligands</topic><topic>Molecular interactions</topic><topic>Organic chemistry</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Salt</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurczab, Rafał</creatorcontrib><creatorcontrib>Śliwa, Paweł</creatorcontrib><creatorcontrib>Rataj, Krzysztof</creatorcontrib><creatorcontrib>Kafel, Rafał</creatorcontrib><creatorcontrib>Bojarski, Andrzej J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurczab, Rafał</au><au>Śliwa, Paweł</au><au>Rataj, Krzysztof</au><au>Kafel, Rafał</au><au>Bojarski, Andrzej J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-11-26</date><risdate>2018</risdate><volume>58</volume><issue>11</issue><spage>2224</spage><epage>2238</epage><pages>2224-2238</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30351056</pmid><doi>10.1021/acs.jcim.8b00266</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9555-3905</orcidid><orcidid>https://orcid.org/0000-0001-9662-8481</orcidid><orcidid>https://orcid.org/0000-0003-1417-6333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2018-11, Vol.58 (11), p.2224-2238
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2127950739
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bridges
Coordination compounds
Data banks
Decomposition
Ligands
Molecular interactions
Organic chemistry
Proteins
Quantum chemistry
Salt
Statistical analysis
title Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20Bridge%20in%20Ligand%E2%80%93Protein%20Complexes%EE%97%B8Systematic%20Theoretical%20and%20Statistical%20Investigations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Kurczab,%20Rafa%C5%82&rft.date=2018-11-26&rft.volume=58&rft.issue=11&rft.spage=2224&rft.epage=2238&rft.pages=2224-2238&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00266&rft_dat=%3Cproquest_cross%3E2127950739%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161054888&rft_id=info:pmid/30351056&rfr_iscdi=true