Loading…
Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations
Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad a...
Saved in:
Published in: | Journal of chemical information and modeling 2018-11, Vol.58 (11), p.2224-2238 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833 |
---|---|
cites | cdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833 |
container_end_page | 2238 |
container_issue | 11 |
container_start_page | 2224 |
container_title | Journal of chemical information and modeling |
container_volume | 58 |
creator | Kurczab, Rafał Śliwa, Paweł Rataj, Krzysztof Kafel, Rafał Bojarski, Andrzej J |
description | Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols. |
doi_str_mv | 10.1021/acs.jcim.8b00266 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2127950739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127950739</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMotlb3rmTAjQtbbyYz-Vlq8adQUGgFd0NmktQp81OTqdid7-DCV_F5fACfwdS2LgRXOTl8597LQegQQw9DiM9k5nrTLC97PAUIKd1CbRxHoisoPGxvdCxoC-05NwUgRNBwF7UIkBhDTNtIjmTRBBc2VxMd5FUwzCeyUp-vb3e2brQ3-nU5K_SLdl_vH6OFa3QpmzwLxo-6ttorWQQ-EIwab7vVf1A9ay8n3qkrt492jCycPli_HXR_dTnu33SHt9eD_vmwKyPATZdRIbWiaaRYJNJMKQ2KK8pEio00cQhguDTUsDQTwEJFKOORMZylhDPDCemgk9Xcma2f5v6ApMxdpotCVrqeuyTEIRMxMCI8evwHndZzW_nrPEV9MRHn3FOwojJbO2e1SWY2L6VdJBiSZf2Jrz9Z1p-s6_eRo_XgeVpq9RvY9O2B0xXwE90s_XfeN166lHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161054888</pqid></control><display><type>article</type><title>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kurczab, Rafał ; Śliwa, Paweł ; Rataj, Krzysztof ; Kafel, Rafał ; Bojarski, Andrzej J</creator><creatorcontrib>Kurczab, Rafał ; Śliwa, Paweł ; Rataj, Krzysztof ; Kafel, Rafał ; Bojarski, Andrzej J</creatorcontrib><description>Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.8b00266</identifier><identifier>PMID: 30351056</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bridges ; Coordination compounds ; Data banks ; Decomposition ; Ligands ; Molecular interactions ; Organic chemistry ; Proteins ; Quantum chemistry ; Salt ; Statistical analysis</subject><ispartof>Journal of chemical information and modeling, 2018-11, Vol.58 (11), p.2224-2238</ispartof><rights>Copyright American Chemical Society Nov 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</citedby><cites>FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</cites><orcidid>0000-0002-9555-3905 ; 0000-0001-9662-8481 ; 0000-0003-1417-6333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurczab, Rafał</creatorcontrib><creatorcontrib>Śliwa, Paweł</creatorcontrib><creatorcontrib>Rataj, Krzysztof</creatorcontrib><creatorcontrib>Kafel, Rafał</creatorcontrib><creatorcontrib>Bojarski, Andrzej J</creatorcontrib><title>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.</description><subject>Bridges</subject><subject>Coordination compounds</subject><subject>Data banks</subject><subject>Decomposition</subject><subject>Ligands</subject><subject>Molecular interactions</subject><subject>Organic chemistry</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Salt</subject><subject>Statistical analysis</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMotlb3rmTAjQtbbyYz-Vlq8adQUGgFd0NmktQp81OTqdid7-DCV_F5fACfwdS2LgRXOTl8597LQegQQw9DiM9k5nrTLC97PAUIKd1CbRxHoisoPGxvdCxoC-05NwUgRNBwF7UIkBhDTNtIjmTRBBc2VxMd5FUwzCeyUp-vb3e2brQ3-nU5K_SLdl_vH6OFa3QpmzwLxo-6ttorWQQ-EIwab7vVf1A9ay8n3qkrt492jCycPli_HXR_dTnu33SHt9eD_vmwKyPATZdRIbWiaaRYJNJMKQ2KK8pEio00cQhguDTUsDQTwEJFKOORMZylhDPDCemgk9Xcma2f5v6ApMxdpotCVrqeuyTEIRMxMCI8evwHndZzW_nrPEV9MRHn3FOwojJbO2e1SWY2L6VdJBiSZf2Jrz9Z1p-s6_eRo_XgeVpq9RvY9O2B0xXwE90s_XfeN166lHc</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Kurczab, Rafał</creator><creator>Śliwa, Paweł</creator><creator>Rataj, Krzysztof</creator><creator>Kafel, Rafał</creator><creator>Bojarski, Andrzej J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9555-3905</orcidid><orcidid>https://orcid.org/0000-0001-9662-8481</orcidid><orcidid>https://orcid.org/0000-0003-1417-6333</orcidid></search><sort><creationdate>20181126</creationdate><title>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</title><author>Kurczab, Rafał ; Śliwa, Paweł ; Rataj, Krzysztof ; Kafel, Rafał ; Bojarski, Andrzej J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bridges</topic><topic>Coordination compounds</topic><topic>Data banks</topic><topic>Decomposition</topic><topic>Ligands</topic><topic>Molecular interactions</topic><topic>Organic chemistry</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Salt</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurczab, Rafał</creatorcontrib><creatorcontrib>Śliwa, Paweł</creatorcontrib><creatorcontrib>Rataj, Krzysztof</creatorcontrib><creatorcontrib>Kafel, Rafał</creatorcontrib><creatorcontrib>Bojarski, Andrzej J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurczab, Rafał</au><au>Śliwa, Paweł</au><au>Rataj, Krzysztof</au><au>Kafel, Rafał</au><au>Bojarski, Andrzej J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-11-26</date><risdate>2018</risdate><volume>58</volume><issue>11</issue><spage>2224</spage><epage>2238</epage><pages>2224-2238</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Although the salt bridge is the strongest among all known noncovalent molecular interactions, no comprehensive studies have been conducted to date to examine its role and significance in drug design. Thus, a systematic study of the salt bridge in biological systems is reported herein, with a broad analysis of publicly available data from Protein Data Bank, DrugBank, ChEMBL, and GPCRdb. The results revealed the distance and angular preferences as well as privileged molecular motifs of salt bridges in ligand–receptor complexes, which could be used to design the strongest interactions. Moreover, using quantum chemical calculations at the MP2 level, the energetic, directionality, and spatial variabilities of salt bridges were investigated using simple model systems mimicking salt bridges in a biological environment. Additionally, natural orbitals for chemical valence (NOCV) combined with the extended-transition-state (ETS) bond-energy decomposition method (ETS–NOCV) were analyzed and indicated a strong covalent contribution to the salt bridge interaction. The present results could be useful for implementation in rational drug design protocols.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30351056</pmid><doi>10.1021/acs.jcim.8b00266</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9555-3905</orcidid><orcidid>https://orcid.org/0000-0001-9662-8481</orcidid><orcidid>https://orcid.org/0000-0003-1417-6333</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2018-11, Vol.58 (11), p.2224-2238 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2127950739 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Bridges Coordination compounds Data banks Decomposition Ligands Molecular interactions Organic chemistry Proteins Quantum chemistry Salt Statistical analysis |
title | Salt Bridge in Ligand–Protein ComplexesSystematic Theoretical and Statistical Investigations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20Bridge%20in%20Ligand%E2%80%93Protein%20Complexes%EE%97%B8Systematic%20Theoretical%20and%20Statistical%20Investigations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Kurczab,%20Rafa%C5%82&rft.date=2018-11-26&rft.volume=58&rft.issue=11&rft.spage=2224&rft.epage=2238&rft.pages=2224-2238&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.8b00266&rft_dat=%3Cproquest_cross%3E2127950739%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-769aed6b4d749bcdde0d8d679b1faf5200f8af6f7bc9072d36784ff87b387f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161054888&rft_id=info:pmid/30351056&rfr_iscdi=true |