Loading…
High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector
Developing a high-efficiency and low-cost light source with emission wavelength transparent to silicon is an essential step toward silicon-based nanophotonic devices and micro/nano industry platforms. Here, a near-infrared monolayer MoTe2 light-emitting diode (LED) has been demonstrated and its emis...
Saved in:
Published in: | ACS applied materials & interfaces 2018-12, Vol.10 (50), p.43291-43298 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing a high-efficiency and low-cost light source with emission wavelength transparent to silicon is an essential step toward silicon-based nanophotonic devices and micro/nano industry platforms. Here, a near-infrared monolayer MoTe2 light-emitting diode (LED) has been demonstrated and its emission wavelength is transparent to silicon. By taking advantage of the quantum tunneling effect, the device has achieved a very high external quantum efficiency (EQE) of 9.5% at 83 K, which is the highest EQE obtained from LED devices fabricated from monolayer TMDs so far. When the device is operated as a photodetector, the MoTe2 device exhibits a strong photoresponsivity at resonant wavelength 1145 nm. The low dark current of ∼5pA and fast response time 5.06 ms are achieved due to suppression of hBN tunneling layer. Our results open a new route for the investigation of novel near-infrared silicon integrated optoelectronic devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b14076 |