Loading…
Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers
Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed “living” crystallization-driven self-assembly (...
Saved in:
Published in: | Journal of the American Chemical Society 2018-12, Vol.140 (49), p.17127-17140 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153 |
---|---|
cites | cdi_FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153 |
container_end_page | 17140 |
container_issue | 49 |
container_start_page | 17127 |
container_title | Journal of the American Chemical Society |
container_volume | 140 |
creator | Finnegan, John R He, Xiaoming Street, Steven T. G Garcia-Hernandez, J. Diego Hayward, Dominic W Harniman, Robert L Richardson, Robert M Whittell, George R Manners, Ian |
description | Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed “living” crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5′-[1,3]-dioxan]-2′-one) (PFTMC), can readily undergo living CDSA processes. PFTMC-b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 μm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC-b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC-b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC-b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries. |
doi_str_mv | 10.1021/jacs.8b09861 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130053639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130053639</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153</originalsourceid><addsrcrecordid>eNptUU1vEzEQtRCIhsKNM_KRA9v6I7Z3uZWk0EpBIBXEcWXvjsHBa6f2piKc-kPoH-jP6i-po6aFA6fRPL15M28eQi8pOaCE0cOl7vJBbUhTS_oITahgpBKUycdoQghhlaol30PPcl6Wdspq-hTtccIbxoWaoOvjXyOE3oXvePwB-KyLK8DR4pvLPwt3UeCbyys8S5s8au_dbz26GKp5chcQ8Bl4Wx3lDIPxm7f4G3hfzcG6AD2mc_zRdQWBjHXo8Tsfu594Fod70KY4_CtsPODP0W86nUwMeoSHkVVBB0j5OXpitc_wYlf30df3x19mJ9Xi04fT2dGi0sXdWBltpVRQK153jeh7ZVndy6miU2W0ZMQaQTphtCKc8mkD5Q2ikZRZppXkVPB99PpOd5Xi-Rry2A4ub6_WAeI6t4xyQgSXvCnUN3fULsWcE9h2ldyg06alpN2m027TaXfpFPqrnfLaDNA_kO_j-Lt6O7WM6xSK0f9r3QI_wJwX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130053639</pqid></control><display><type>article</type><title>Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Finnegan, John R ; He, Xiaoming ; Street, Steven T. G ; Garcia-Hernandez, J. Diego ; Hayward, Dominic W ; Harniman, Robert L ; Richardson, Robert M ; Whittell, George R ; Manners, Ian</creator><creatorcontrib>Finnegan, John R ; He, Xiaoming ; Street, Steven T. G ; Garcia-Hernandez, J. Diego ; Hayward, Dominic W ; Harniman, Robert L ; Richardson, Robert M ; Whittell, George R ; Manners, Ian</creatorcontrib><description>Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed “living” crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5′-[1,3]-dioxan]-2′-one) (PFTMC), can readily undergo living CDSA processes. PFTMC-b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 μm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC-b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC-b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC-b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b09861</identifier><identifier>PMID: 30392357</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-12, Vol.140 (49), p.17127-17140</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153</citedby><cites>FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153</cites><orcidid>0000-0002-7635-8733 ; 0000-0002-5084-2463 ; 0000-0002-2848-5025 ; 0000-0001-8559-0166 ; 0000-0001-6343-5659 ; 0000-0003-2596-7042 ; 0000-0001-7441-9291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30392357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finnegan, John R</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><creatorcontrib>Street, Steven T. G</creatorcontrib><creatorcontrib>Garcia-Hernandez, J. Diego</creatorcontrib><creatorcontrib>Hayward, Dominic W</creatorcontrib><creatorcontrib>Harniman, Robert L</creatorcontrib><creatorcontrib>Richardson, Robert M</creatorcontrib><creatorcontrib>Whittell, George R</creatorcontrib><creatorcontrib>Manners, Ian</creatorcontrib><title>Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed “living” crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5′-[1,3]-dioxan]-2′-one) (PFTMC), can readily undergo living CDSA processes. PFTMC-b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 μm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC-b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC-b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC-b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptUU1vEzEQtRCIhsKNM_KRA9v6I7Z3uZWk0EpBIBXEcWXvjsHBa6f2piKc-kPoH-jP6i-po6aFA6fRPL15M28eQi8pOaCE0cOl7vJBbUhTS_oITahgpBKUycdoQghhlaol30PPcl6Wdspq-hTtccIbxoWaoOvjXyOE3oXvePwB-KyLK8DR4pvLPwt3UeCbyys8S5s8au_dbz26GKp5chcQ8Bl4Wx3lDIPxm7f4G3hfzcG6AD2mc_zRdQWBjHXo8Tsfu594Fod70KY4_CtsPODP0W86nUwMeoSHkVVBB0j5OXpitc_wYlf30df3x19mJ9Xi04fT2dGi0sXdWBltpVRQK153jeh7ZVndy6miU2W0ZMQaQTphtCKc8mkD5Q2ikZRZppXkVPB99PpOd5Xi-Rry2A4ub6_WAeI6t4xyQgSXvCnUN3fULsWcE9h2ldyg06alpN2m027TaXfpFPqrnfLaDNA_kO_j-Lt6O7WM6xSK0f9r3QI_wJwX</recordid><startdate>20181212</startdate><enddate>20181212</enddate><creator>Finnegan, John R</creator><creator>He, Xiaoming</creator><creator>Street, Steven T. G</creator><creator>Garcia-Hernandez, J. Diego</creator><creator>Hayward, Dominic W</creator><creator>Harniman, Robert L</creator><creator>Richardson, Robert M</creator><creator>Whittell, George R</creator><creator>Manners, Ian</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7635-8733</orcidid><orcidid>https://orcid.org/0000-0002-5084-2463</orcidid><orcidid>https://orcid.org/0000-0002-2848-5025</orcidid><orcidid>https://orcid.org/0000-0001-8559-0166</orcidid><orcidid>https://orcid.org/0000-0001-6343-5659</orcidid><orcidid>https://orcid.org/0000-0003-2596-7042</orcidid><orcidid>https://orcid.org/0000-0001-7441-9291</orcidid></search><sort><creationdate>20181212</creationdate><title>Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers</title><author>Finnegan, John R ; He, Xiaoming ; Street, Steven T. G ; Garcia-Hernandez, J. Diego ; Hayward, Dominic W ; Harniman, Robert L ; Richardson, Robert M ; Whittell, George R ; Manners, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finnegan, John R</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><creatorcontrib>Street, Steven T. G</creatorcontrib><creatorcontrib>Garcia-Hernandez, J. Diego</creatorcontrib><creatorcontrib>Hayward, Dominic W</creatorcontrib><creatorcontrib>Harniman, Robert L</creatorcontrib><creatorcontrib>Richardson, Robert M</creatorcontrib><creatorcontrib>Whittell, George R</creatorcontrib><creatorcontrib>Manners, Ian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finnegan, John R</au><au>He, Xiaoming</au><au>Street, Steven T. G</au><au>Garcia-Hernandez, J. Diego</au><au>Hayward, Dominic W</au><au>Harniman, Robert L</au><au>Richardson, Robert M</au><au>Whittell, George R</au><au>Manners, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-12-12</date><risdate>2018</risdate><volume>140</volume><issue>49</issue><spage>17127</spage><epage>17140</epage><pages>17127-17140</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed “living” crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5′-[1,3]-dioxan]-2′-one) (PFTMC), can readily undergo living CDSA processes. PFTMC-b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 μm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC-b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC-b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC-b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30392357</pmid><doi>10.1021/jacs.8b09861</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7635-8733</orcidid><orcidid>https://orcid.org/0000-0002-5084-2463</orcidid><orcidid>https://orcid.org/0000-0002-2848-5025</orcidid><orcidid>https://orcid.org/0000-0001-8559-0166</orcidid><orcidid>https://orcid.org/0000-0001-6343-5659</orcidid><orcidid>https://orcid.org/0000-0003-2596-7042</orcidid><orcidid>https://orcid.org/0000-0001-7441-9291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2018-12, Vol.140 (49), p.17127-17140 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2130053639 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20the%20Scope%20of%20%E2%80%9CLiving%E2%80%9D%20Crystallization-Driven%20Self-Assembly:%20Well-Defined%201D%20Micelles%20and%20Block%20Comicelles%20from%20Crystallizable%20Polycarbonate%20Block%20Copolymers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Finnegan,%20John%20R&rft.date=2018-12-12&rft.volume=140&rft.issue=49&rft.spage=17127&rft.epage=17140&rft.pages=17127-17140&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b09861&rft_dat=%3Cproquest_cross%3E2130053639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a428t-baf667e8738c95dd7f28d647147ba620fb50c5ba7031349e35759612f2a763153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2130053639&rft_id=info:pmid/30392357&rfr_iscdi=true |