Loading…

Topography of a Visuomotor Transformation

The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2018-12, Vol.100 (6), p.1429-1445.e4
Main Authors: Helmbrecht, Thomas O., dal Maschio, Marco, Donovan, Joseph C., Koutsouli, Styliani, Baier, Herwig
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3
cites cdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3
container_end_page 1445.e4
container_issue 6
container_start_page 1429
container_title Neuron (Cambridge, Mass.)
container_volume 100
creator Helmbrecht, Thomas O.
dal Maschio, Marco
Donovan, Joseph C.
Koutsouli, Styliani
Baier, Herwig
description The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain. [Display omitted] •The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.
doi_str_mv 10.1016/j.neuron.2018.10.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130054546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318309097</els_id><sourcerecordid>2158513363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6D0QKXvTQmjTpRy6CLH7BgpfVa0jTiaZsm5q0wv57s3T14MHTwPC87wwPQucEJwST_KZJOhid7ZIUkzKsEpySAzQnmBcxI5wfojkueR7naUFn6MT7BmPCMk6O0YxiytOC8zm6XtvevjvZf2wjqyMZvRk_2tYO1kVrJzuvrWvlYGx3io603Hg4288Fen24Xy-f4tXL4_PybhUrRvMhrhiUdYkVzYuaF7UmlGsoCK4kgOJAM5UDxaxSuC6Z1KVWGZBaA8spS3VV0QW6mnp7Zz9H8INojVew2cgO7OhFSijGGctCYIEu_6CNHV0XvgtUVmaE0pwGik2UctZ7B1r0zrTSbQXBYqdSNGJSKXYqd9ugMsQu9uVj1UL9G_pxF4DbCYBg48uAE14Z6BTUxoEaRG3N_xe-ATXLhms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158513363</pqid></control><display><type>article</type><title>Topography of a Visuomotor Transformation</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Helmbrecht, Thomas O. ; dal Maschio, Marco ; Donovan, Joseph C. ; Koutsouli, Styliani ; Baier, Herwig</creator><creatorcontrib>Helmbrecht, Thomas O. ; dal Maschio, Marco ; Donovan, Joseph C. ; Koutsouli, Styliani ; Baier, Herwig</creatorcontrib><description>The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain. [Display omitted] •The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.10.021</identifier><identifier>PMID: 30392799</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Axon guidance ; Cluster analysis ; Danio rerio ; Hindbrain ; Localization ; motor map ; Neuroimaging ; Neurons ; optic tectum ; optogenetics ; reticular formation ; Retina ; Sensorimotor integration ; Sensorimotor system ; Software ; space code ; superior colliculus ; Swimming ; tectal projectome ; Tectum ; Topography ; visuomotor transformation ; zebrafish</subject><ispartof>Neuron (Cambridge, Mass.), 2018-12, Vol.100 (6), p.1429-1445.e4</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 19, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</citedby><cites>FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30392799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmbrecht, Thomas O.</creatorcontrib><creatorcontrib>dal Maschio, Marco</creatorcontrib><creatorcontrib>Donovan, Joseph C.</creatorcontrib><creatorcontrib>Koutsouli, Styliani</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><title>Topography of a Visuomotor Transformation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain. [Display omitted] •The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.</description><subject>Axon guidance</subject><subject>Cluster analysis</subject><subject>Danio rerio</subject><subject>Hindbrain</subject><subject>Localization</subject><subject>motor map</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>optic tectum</subject><subject>optogenetics</subject><subject>reticular formation</subject><subject>Retina</subject><subject>Sensorimotor integration</subject><subject>Sensorimotor system</subject><subject>Software</subject><subject>space code</subject><subject>superior colliculus</subject><subject>Swimming</subject><subject>tectal projectome</subject><subject>Tectum</subject><subject>Topography</subject><subject>visuomotor transformation</subject><subject>zebrafish</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7rr6D0QKXvTQmjTpRy6CLH7BgpfVa0jTiaZsm5q0wv57s3T14MHTwPC87wwPQucEJwST_KZJOhid7ZIUkzKsEpySAzQnmBcxI5wfojkueR7naUFn6MT7BmPCMk6O0YxiytOC8zm6XtvevjvZf2wjqyMZvRk_2tYO1kVrJzuvrWvlYGx3io603Hg4288Fen24Xy-f4tXL4_PybhUrRvMhrhiUdYkVzYuaF7UmlGsoCK4kgOJAM5UDxaxSuC6Z1KVWGZBaA8spS3VV0QW6mnp7Zz9H8INojVew2cgO7OhFSijGGctCYIEu_6CNHV0XvgtUVmaE0pwGik2UctZ7B1r0zrTSbQXBYqdSNGJSKXYqd9ugMsQu9uVj1UL9G_pxF4DbCYBg48uAE14Z6BTUxoEaRG3N_xe-ATXLhms</recordid><startdate>20181219</startdate><enddate>20181219</enddate><creator>Helmbrecht, Thomas O.</creator><creator>dal Maschio, Marco</creator><creator>Donovan, Joseph C.</creator><creator>Koutsouli, Styliani</creator><creator>Baier, Herwig</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20181219</creationdate><title>Topography of a Visuomotor Transformation</title><author>Helmbrecht, Thomas O. ; dal Maschio, Marco ; Donovan, Joseph C. ; Koutsouli, Styliani ; Baier, Herwig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axon guidance</topic><topic>Cluster analysis</topic><topic>Danio rerio</topic><topic>Hindbrain</topic><topic>Localization</topic><topic>motor map</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>optic tectum</topic><topic>optogenetics</topic><topic>reticular formation</topic><topic>Retina</topic><topic>Sensorimotor integration</topic><topic>Sensorimotor system</topic><topic>Software</topic><topic>space code</topic><topic>superior colliculus</topic><topic>Swimming</topic><topic>tectal projectome</topic><topic>Tectum</topic><topic>Topography</topic><topic>visuomotor transformation</topic><topic>zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmbrecht, Thomas O.</creatorcontrib><creatorcontrib>dal Maschio, Marco</creatorcontrib><creatorcontrib>Donovan, Joseph C.</creatorcontrib><creatorcontrib>Koutsouli, Styliani</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmbrecht, Thomas O.</au><au>dal Maschio, Marco</au><au>Donovan, Joseph C.</au><au>Koutsouli, Styliani</au><au>Baier, Herwig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topography of a Visuomotor Transformation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-12-19</date><risdate>2018</risdate><volume>100</volume><issue>6</issue><spage>1429</spage><epage>1445.e4</epage><pages>1429-1445.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain. [Display omitted] •The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30392799</pmid><doi>10.1016/j.neuron.2018.10.021</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-12, Vol.100 (6), p.1429-1445.e4
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_2130054546
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Axon guidance
Cluster analysis
Danio rerio
Hindbrain
Localization
motor map
Neuroimaging
Neurons
optic tectum
optogenetics
reticular formation
Retina
Sensorimotor integration
Sensorimotor system
Software
space code
superior colliculus
Swimming
tectal projectome
Tectum
Topography
visuomotor transformation
zebrafish
title Topography of a Visuomotor Transformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topography%20of%20a%20Visuomotor%20Transformation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Helmbrecht,%20Thomas%20O.&rft.date=2018-12-19&rft.volume=100&rft.issue=6&rft.spage=1429&rft.epage=1445.e4&rft.pages=1429-1445.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.10.021&rft_dat=%3Cproquest_cross%3E2158513363%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158513363&rft_id=info:pmid/30392799&rfr_iscdi=true