Loading…
Topography of a Visuomotor Transformation
The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2018-12, Vol.100 (6), p.1429-1445.e4 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3 |
container_end_page | 1445.e4 |
container_issue | 6 |
container_start_page | 1429 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 100 |
creator | Helmbrecht, Thomas O. dal Maschio, Marco Donovan, Joseph C. Koutsouli, Styliani Baier, Herwig |
description | The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain.
[Display omitted]
•The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain
Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits. |
doi_str_mv | 10.1016/j.neuron.2018.10.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130054546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318309097</els_id><sourcerecordid>2130054546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6D0QKXvTQmjTpRy6CLH7BgpfVa0jTiaZsm5q0wv57s3T14MHTwPC87wwPQucEJwST_KZJOhid7ZIUkzKsEpySAzQnmBcxI5wfojkueR7naUFn6MT7BmPCMk6O0YxiytOC8zm6XtvevjvZf2wjqyMZvRk_2tYO1kVrJzuvrWvlYGx3io603Hg4288Fen24Xy-f4tXL4_PybhUrRvMhrhiUdYkVzYuaF7UmlGsoCK4kgOJAM5UDxaxSuC6Z1KVWGZBaA8spS3VV0QW6mnp7Zz9H8INojVew2cgO7OhFSijGGctCYIEu_6CNHV0XvgtUVmaE0pwGik2UctZ7B1r0zrTSbQXBYqdSNGJSKXYqd9ugMsQu9uVj1UL9G_pxF4DbCYBg48uAE14Z6BTUxoEaRG3N_xe-ATXLhms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158513363</pqid></control><display><type>article</type><title>Topography of a Visuomotor Transformation</title><source>ScienceDirect Open Access</source><creator>Helmbrecht, Thomas O. ; dal Maschio, Marco ; Donovan, Joseph C. ; Koutsouli, Styliani ; Baier, Herwig</creator><creatorcontrib>Helmbrecht, Thomas O. ; dal Maschio, Marco ; Donovan, Joseph C. ; Koutsouli, Styliani ; Baier, Herwig</creatorcontrib><description>The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain.
[Display omitted]
•The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain
Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.10.021</identifier><identifier>PMID: 30392799</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Genetically Modified ; Axon guidance ; Brain Mapping ; Calcium - metabolism ; Channelrhodopsins - genetics ; Channelrhodopsins - metabolism ; Cluster analysis ; Cues ; Danio rerio ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Hindbrain ; Larva ; Localization ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Motor Activity - physiology ; motor map ; Neuroimaging ; Neurons ; Neurons - physiology ; optic tectum ; Optogenetics ; Photic Stimulation ; reticular formation ; Retina ; Sensorimotor integration ; Sensorimotor system ; Software ; space code ; Superior Colliculi - cytology ; superior colliculus ; Swimming ; tectal projectome ; Tectum ; Topography ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Visual Pathways - cytology ; Visual Pathways - physiology ; Visual Perception - physiology ; visuomotor transformation ; Zebrafish ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2018-12, Vol.100 (6), p.1429-1445.e4</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 19, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</citedby><cites>FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30392799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmbrecht, Thomas O.</creatorcontrib><creatorcontrib>dal Maschio, Marco</creatorcontrib><creatorcontrib>Donovan, Joseph C.</creatorcontrib><creatorcontrib>Koutsouli, Styliani</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><title>Topography of a Visuomotor Transformation</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain.
[Display omitted]
•The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain
Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Axon guidance</subject><subject>Brain Mapping</subject><subject>Calcium - metabolism</subject><subject>Channelrhodopsins - genetics</subject><subject>Channelrhodopsins - metabolism</subject><subject>Cluster analysis</subject><subject>Cues</subject><subject>Danio rerio</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Hindbrain</subject><subject>Larva</subject><subject>Localization</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Motor Activity - physiology</subject><subject>motor map</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>optic tectum</subject><subject>Optogenetics</subject><subject>Photic Stimulation</subject><subject>reticular formation</subject><subject>Retina</subject><subject>Sensorimotor integration</subject><subject>Sensorimotor system</subject><subject>Software</subject><subject>space code</subject><subject>Superior Colliculi - cytology</subject><subject>superior colliculus</subject><subject>Swimming</subject><subject>tectal projectome</subject><subject>Tectum</subject><subject>Topography</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Visual Pathways - cytology</subject><subject>Visual Pathways - physiology</subject><subject>Visual Perception - physiology</subject><subject>visuomotor transformation</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7rr6D0QKXvTQmjTpRy6CLH7BgpfVa0jTiaZsm5q0wv57s3T14MHTwPC87wwPQucEJwST_KZJOhid7ZIUkzKsEpySAzQnmBcxI5wfojkueR7naUFn6MT7BmPCMk6O0YxiytOC8zm6XtvevjvZf2wjqyMZvRk_2tYO1kVrJzuvrWvlYGx3io603Hg4288Fen24Xy-f4tXL4_PybhUrRvMhrhiUdYkVzYuaF7UmlGsoCK4kgOJAM5UDxaxSuC6Z1KVWGZBaA8spS3VV0QW6mnp7Zz9H8INojVew2cgO7OhFSijGGctCYIEu_6CNHV0XvgtUVmaE0pwGik2UctZ7B1r0zrTSbQXBYqdSNGJSKXYqd9ugMsQu9uVj1UL9G_pxF4DbCYBg48uAE14Z6BTUxoEaRG3N_xe-ATXLhms</recordid><startdate>20181219</startdate><enddate>20181219</enddate><creator>Helmbrecht, Thomas O.</creator><creator>dal Maschio, Marco</creator><creator>Donovan, Joseph C.</creator><creator>Koutsouli, Styliani</creator><creator>Baier, Herwig</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20181219</creationdate><title>Topography of a Visuomotor Transformation</title><author>Helmbrecht, Thomas O. ; dal Maschio, Marco ; Donovan, Joseph C. ; Koutsouli, Styliani ; Baier, Herwig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Axon guidance</topic><topic>Brain Mapping</topic><topic>Calcium - metabolism</topic><topic>Channelrhodopsins - genetics</topic><topic>Channelrhodopsins - metabolism</topic><topic>Cluster analysis</topic><topic>Cues</topic><topic>Danio rerio</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Hindbrain</topic><topic>Larva</topic><topic>Localization</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Motor Activity - physiology</topic><topic>motor map</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>optic tectum</topic><topic>Optogenetics</topic><topic>Photic Stimulation</topic><topic>reticular formation</topic><topic>Retina</topic><topic>Sensorimotor integration</topic><topic>Sensorimotor system</topic><topic>Software</topic><topic>space code</topic><topic>Superior Colliculi - cytology</topic><topic>superior colliculus</topic><topic>Swimming</topic><topic>tectal projectome</topic><topic>Tectum</topic><topic>Topography</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Visual Pathways - cytology</topic><topic>Visual Pathways - physiology</topic><topic>Visual Perception - physiology</topic><topic>visuomotor transformation</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmbrecht, Thomas O.</creatorcontrib><creatorcontrib>dal Maschio, Marco</creatorcontrib><creatorcontrib>Donovan, Joseph C.</creatorcontrib><creatorcontrib>Koutsouli, Styliani</creatorcontrib><creatorcontrib>Baier, Herwig</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmbrecht, Thomas O.</au><au>dal Maschio, Marco</au><au>Donovan, Joseph C.</au><au>Koutsouli, Styliani</au><au>Baier, Herwig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topography of a Visuomotor Transformation</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-12-19</date><risdate>2018</risdate><volume>100</volume><issue>6</issue><spage>1429</spage><epage>1445.e4</epage><pages>1429-1445.e4</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The brain converts perceptual information into appropriate patterns of muscle activity depending on the categorization and localization of sensory cues. Sensorimotor information might either be encoded by distributed networks or by “labeled lines” connecting sensory channels to dedicated behavioral pathways. Here we investigate, in the context of natural behavior, how the tectum of larval zebrafish can inform downstream premotor areas. Optogenetic mapping revealed a tectal motor map underlying locomotor maneuvers for escape and approach. Single-cell reconstructions and high-resolution functional imaging showed that two spatially segregated and uncrossed descending axon tracts selectively transmit approach and escape signals to the hindbrain. Moreover, the approach pathway conveys information about retinotopic target coordinates to specific premotor ensembles via spatially ordered axonal projections. This topographic organization supports a tectum-generated space code sufficient to steer orienting movements. We conclude that specific labeled lines guide object-directed behavior in the larval zebrafish brain.
[Display omitted]
•The tectal motor map in zebrafish larvae is topographically organized•A cellular resolution anatomical atlas of tectal projection neurons is generated•Segregated tectal output pathways convey looming/dimming and prey-likeinformation•Retinotopically organized tectal projections relay prey location to the hindbrain
Helmbrecht et al. identify neural pathways connecting the tectum to target areas. Combining optogenetics, imaging, and single-cell reconstructions, they assign behavioral functions to distinct classes of projection neurons conveying information about valence and location of visual objects to premotor circuits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30392799</pmid><doi>10.1016/j.neuron.2018.10.021</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-12, Vol.100 (6), p.1429-1445.e4 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2130054546 |
source | ScienceDirect Open Access |
subjects | Animals Animals, Genetically Modified Axon guidance Brain Mapping Calcium - metabolism Channelrhodopsins - genetics Channelrhodopsins - metabolism Cluster analysis Cues Danio rerio DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Hindbrain Larva Localization Luminescent Proteins - genetics Luminescent Proteins - metabolism Motor Activity - physiology motor map Neuroimaging Neurons Neurons - physiology optic tectum Optogenetics Photic Stimulation reticular formation Retina Sensorimotor integration Sensorimotor system Software space code Superior Colliculi - cytology superior colliculus Swimming tectal projectome Tectum Topography Transcription Factors - genetics Transcription Factors - metabolism Visual Pathways - cytology Visual Pathways - physiology Visual Perception - physiology visuomotor transformation Zebrafish Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Topography of a Visuomotor Transformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T02%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topography%20of%20a%20Visuomotor%20Transformation&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Helmbrecht,%20Thomas%20O.&rft.date=2018-12-19&rft.volume=100&rft.issue=6&rft.spage=1429&rft.epage=1445.e4&rft.pages=1429-1445.e4&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.10.021&rft_dat=%3Cproquest_cross%3E2130054546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-b4e8d80c367d97df139fe710baeec9e35c6e304bc0d84af8fc5e1dfe46342fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158513363&rft_id=info:pmid/30392799&rfr_iscdi=true |