Loading…

Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes

The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In princip...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-01, Vol.31 (2), p.e1805334-n/a
Main Authors: Huang, Gang, Han, Jiuhui, Zhang, Fan, Wang, Ziqian, Kashani, Hamzeh, Watanabe, Kentaro, Chen, Mingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183
cites cdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183
container_end_page n/a
container_issue 2
container_start_page e1805334
container_title Advanced materials (Weinheim)
container_volume 31
creator Huang, Gang
Han, Jiuhui
Zhang, Fan
Wang, Ziqian
Kashani, Hamzeh
Watanabe, Kentaro
Chen, Mingwei
description The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries. A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.
doi_str_mv 10.1002/adma.201805334
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130303953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164464944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EosPAliWyxIZNBv8nXo46tCBNi4ToOroT3zSukjjYiarueASekSfBZUqR2LCybB8fXX8fIa8523DGxHtwA2wE4xXTUqonZMW14IViVj8lK2alLqxR1Ql5kdINY8waZp6TE8mkLa0oV2Te-7nzYep87xsqd_QSxjCFGJZEL_0cwzWOP7__2IUJHT2PMHU4Im1DpDscXfQz5tuziEhhdPSqnyN0_rrLh19gRvrbvgx5e4Ez9HQ7BofpJXnWQp_w1cO6JldnH76efiz2n88_nW73RaPKShWmaRtdOgXuILgALWSp2EG1ujm4ykheAq-a1rTaQJUDAFnpEpzVrhSG50jkmrw7eqcYvi2Y5nrwqcG-hxHzB2vBcxA5ihzdmrz9B70JSxzzdJkyShlllcrU5kg1MaQUsa2n6AeIdzVn9X0f9X0f9WMf-cGbB-1yGNA94n8KyIA9Are-x7v_6Ort7mL7V_4LIfWaOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164464944</pqid></control><display><type>article</type><title>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Gang ; Han, Jiuhui ; Zhang, Fan ; Wang, Ziqian ; Kashani, Hamzeh ; Watanabe, Kentaro ; Chen, Mingwei</creator><creatorcontrib>Huang, Gang ; Han, Jiuhui ; Zhang, Fan ; Wang, Ziqian ; Kashani, Hamzeh ; Watanabe, Kentaro ; Chen, Mingwei</creatorcontrib><description>The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries. A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201805334</identifier><identifier>PMID: 30397927</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Batteries ; dendrite suppression ; Dendritic structure ; Energy storage ; Graphene ; Hazard mitigation ; Lithium ; Lithium batteries ; Li‐metal anodes ; nanoporous N‐doped graphene ; Porosity ; Rechargeable batteries ; Scaffolds ; Storage batteries ; Variations</subject><ispartof>Advanced materials (Weinheim), 2019-01, Vol.31 (2), p.e1805334-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</citedby><cites>FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</cites><orcidid>0000-0002-4063-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30397927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Wang, Ziqian</creatorcontrib><creatorcontrib>Kashani, Hamzeh</creatorcontrib><creatorcontrib>Watanabe, Kentaro</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><title>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries. A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.</description><subject>Anodes</subject><subject>Batteries</subject><subject>dendrite suppression</subject><subject>Dendritic structure</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Hazard mitigation</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Li‐metal anodes</subject><subject>nanoporous N‐doped graphene</subject><subject>Porosity</subject><subject>Rechargeable batteries</subject><subject>Scaffolds</subject><subject>Storage batteries</subject><subject>Variations</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi0EosPAliWyxIZNBv8nXo46tCBNi4ToOroT3zSukjjYiarueASekSfBZUqR2LCybB8fXX8fIa8523DGxHtwA2wE4xXTUqonZMW14IViVj8lK2alLqxR1Ql5kdINY8waZp6TE8mkLa0oV2Te-7nzYep87xsqd_QSxjCFGJZEL_0cwzWOP7__2IUJHT2PMHU4Im1DpDscXfQz5tuziEhhdPSqnyN0_rrLh19gRvrbvgx5e4Ez9HQ7BofpJXnWQp_w1cO6JldnH76efiz2n88_nW73RaPKShWmaRtdOgXuILgALWSp2EG1ujm4ykheAq-a1rTaQJUDAFnpEpzVrhSG50jkmrw7eqcYvi2Y5nrwqcG-hxHzB2vBcxA5ihzdmrz9B70JSxzzdJkyShlllcrU5kg1MaQUsa2n6AeIdzVn9X0f9X0f9WMf-cGbB-1yGNA94n8KyIA9Are-x7v_6Ort7mL7V_4LIfWaOw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Huang, Gang</creator><creator>Han, Jiuhui</creator><creator>Zhang, Fan</creator><creator>Wang, Ziqian</creator><creator>Kashani, Hamzeh</creator><creator>Watanabe, Kentaro</creator><creator>Chen, Mingwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid></search><sort><creationdate>20190101</creationdate><title>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</title><author>Huang, Gang ; Han, Jiuhui ; Zhang, Fan ; Wang, Ziqian ; Kashani, Hamzeh ; Watanabe, Kentaro ; Chen, Mingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>dendrite suppression</topic><topic>Dendritic structure</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Hazard mitigation</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Li‐metal anodes</topic><topic>nanoporous N‐doped graphene</topic><topic>Porosity</topic><topic>Rechargeable batteries</topic><topic>Scaffolds</topic><topic>Storage batteries</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Wang, Ziqian</creatorcontrib><creatorcontrib>Kashani, Hamzeh</creatorcontrib><creatorcontrib>Watanabe, Kentaro</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Gang</au><au>Han, Jiuhui</au><au>Zhang, Fan</au><au>Wang, Ziqian</au><au>Kashani, Hamzeh</au><au>Watanabe, Kentaro</au><au>Chen, Mingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>2</issue><spage>e1805334</spage><epage>n/a</epage><pages>e1805334-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries. A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30397927</pmid><doi>10.1002/adma.201805334</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-01, Vol.31 (2), p.e1805334-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2130303953
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
Batteries
dendrite suppression
Dendritic structure
Energy storage
Graphene
Hazard mitigation
Lithium
Lithium batteries
Li‐metal anodes
nanoporous N‐doped graphene
Porosity
Rechargeable batteries
Scaffolds
Storage batteries
Variations
title Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithiophilic%203D%20Nanoporous%20Nitrogen%E2%80%90Doped%20Graphene%20for%20Dendrite%E2%80%90Free%20and%20Ultrahigh%E2%80%90Rate%20Lithium%E2%80%90Metal%20Anodes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Huang,%20Gang&rft.date=2019-01-01&rft.volume=31&rft.issue=2&rft.spage=e1805334&rft.epage=n/a&rft.pages=e1805334-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201805334&rft_dat=%3Cproquest_cross%3E2164464944%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164464944&rft_id=info:pmid/30397927&rfr_iscdi=true