Loading…
Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes
The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In princip...
Saved in:
Published in: | Advanced materials (Weinheim) 2019-01, Vol.31 (2), p.e1805334-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183 |
---|---|
cites | cdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | e1805334 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Huang, Gang Han, Jiuhui Zhang, Fan Wang, Ziqian Kashani, Hamzeh Watanabe, Kentaro Chen, Mingwei |
description | The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.
A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities. |
doi_str_mv | 10.1002/adma.201805334 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2130303953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164464944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EosPAliWyxIZNBv8nXo46tCBNi4ToOroT3zSukjjYiarueASekSfBZUqR2LCybB8fXX8fIa8523DGxHtwA2wE4xXTUqonZMW14IViVj8lK2alLqxR1Ql5kdINY8waZp6TE8mkLa0oV2Te-7nzYep87xsqd_QSxjCFGJZEL_0cwzWOP7__2IUJHT2PMHU4Im1DpDscXfQz5tuziEhhdPSqnyN0_rrLh19gRvrbvgx5e4Ez9HQ7BofpJXnWQp_w1cO6JldnH76efiz2n88_nW73RaPKShWmaRtdOgXuILgALWSp2EG1ujm4ykheAq-a1rTaQJUDAFnpEpzVrhSG50jkmrw7eqcYvi2Y5nrwqcG-hxHzB2vBcxA5ihzdmrz9B70JSxzzdJkyShlllcrU5kg1MaQUsa2n6AeIdzVn9X0f9X0f9WMf-cGbB-1yGNA94n8KyIA9Are-x7v_6Ort7mL7V_4LIfWaOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164464944</pqid></control><display><type>article</type><title>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Huang, Gang ; Han, Jiuhui ; Zhang, Fan ; Wang, Ziqian ; Kashani, Hamzeh ; Watanabe, Kentaro ; Chen, Mingwei</creator><creatorcontrib>Huang, Gang ; Han, Jiuhui ; Zhang, Fan ; Wang, Ziqian ; Kashani, Hamzeh ; Watanabe, Kentaro ; Chen, Mingwei</creatorcontrib><description>The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.
A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201805334</identifier><identifier>PMID: 30397927</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Batteries ; dendrite suppression ; Dendritic structure ; Energy storage ; Graphene ; Hazard mitigation ; Lithium ; Lithium batteries ; Li‐metal anodes ; nanoporous N‐doped graphene ; Porosity ; Rechargeable batteries ; Scaffolds ; Storage batteries ; Variations</subject><ispartof>Advanced materials (Weinheim), 2019-01, Vol.31 (2), p.e1805334-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</citedby><cites>FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</cites><orcidid>0000-0002-4063-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30397927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Wang, Ziqian</creatorcontrib><creatorcontrib>Kashani, Hamzeh</creatorcontrib><creatorcontrib>Watanabe, Kentaro</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><title>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.
A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.</description><subject>Anodes</subject><subject>Batteries</subject><subject>dendrite suppression</subject><subject>Dendritic structure</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Hazard mitigation</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Li‐metal anodes</subject><subject>nanoporous N‐doped graphene</subject><subject>Porosity</subject><subject>Rechargeable batteries</subject><subject>Scaffolds</subject><subject>Storage batteries</subject><subject>Variations</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi0EosPAliWyxIZNBv8nXo46tCBNi4ToOroT3zSukjjYiarueASekSfBZUqR2LCybB8fXX8fIa8523DGxHtwA2wE4xXTUqonZMW14IViVj8lK2alLqxR1Ql5kdINY8waZp6TE8mkLa0oV2Te-7nzYep87xsqd_QSxjCFGJZEL_0cwzWOP7__2IUJHT2PMHU4Im1DpDscXfQz5tuziEhhdPSqnyN0_rrLh19gRvrbvgx5e4Ez9HQ7BofpJXnWQp_w1cO6JldnH76efiz2n88_nW73RaPKShWmaRtdOgXuILgALWSp2EG1ujm4ykheAq-a1rTaQJUDAFnpEpzVrhSG50jkmrw7eqcYvi2Y5nrwqcG-hxHzB2vBcxA5ihzdmrz9B70JSxzzdJkyShlllcrU5kg1MaQUsa2n6AeIdzVn9X0f9X0f9WMf-cGbB-1yGNA94n8KyIA9Are-x7v_6Ort7mL7V_4LIfWaOw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Huang, Gang</creator><creator>Han, Jiuhui</creator><creator>Zhang, Fan</creator><creator>Wang, Ziqian</creator><creator>Kashani, Hamzeh</creator><creator>Watanabe, Kentaro</creator><creator>Chen, Mingwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid></search><sort><creationdate>20190101</creationdate><title>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</title><author>Huang, Gang ; Han, Jiuhui ; Zhang, Fan ; Wang, Ziqian ; Kashani, Hamzeh ; Watanabe, Kentaro ; Chen, Mingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>dendrite suppression</topic><topic>Dendritic structure</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Hazard mitigation</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Li‐metal anodes</topic><topic>nanoporous N‐doped graphene</topic><topic>Porosity</topic><topic>Rechargeable batteries</topic><topic>Scaffolds</topic><topic>Storage batteries</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Han, Jiuhui</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Wang, Ziqian</creatorcontrib><creatorcontrib>Kashani, Hamzeh</creatorcontrib><creatorcontrib>Watanabe, Kentaro</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Gang</au><au>Han, Jiuhui</au><au>Zhang, Fan</au><au>Wang, Ziqian</au><au>Kashani, Hamzeh</au><au>Watanabe, Kentaro</au><au>Chen, Mingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>2</issue><spage>e1805334</spage><epage>n/a</epage><pages>e1805334-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.
A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30397927</pmid><doi>10.1002/adma.201805334</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4063-9605</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-01, Vol.31 (2), p.e1805334-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2130303953 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anodes Batteries dendrite suppression Dendritic structure Energy storage Graphene Hazard mitigation Lithium Lithium batteries Li‐metal anodes nanoporous N‐doped graphene Porosity Rechargeable batteries Scaffolds Storage batteries Variations |
title | Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithiophilic%203D%20Nanoporous%20Nitrogen%E2%80%90Doped%20Graphene%20for%20Dendrite%E2%80%90Free%20and%20Ultrahigh%E2%80%90Rate%20Lithium%E2%80%90Metal%20Anodes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Huang,%20Gang&rft.date=2019-01-01&rft.volume=31&rft.issue=2&rft.spage=e1805334&rft.epage=n/a&rft.pages=e1805334-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201805334&rft_dat=%3Cproquest_cross%3E2164464944%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4784-6cfc57d4adb212a523740b4f5cbd86317a18cf6f56a8180a3857ad95d72610183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164464944&rft_id=info:pmid/30397927&rfr_iscdi=true |