Loading…
Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway
Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, th...
Saved in:
Published in: | Biological trace element research 2019-08, Vol.190 (2), p.327-335 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63 |
container_end_page | 335 |
container_issue | 2 |
container_start_page | 327 |
container_title | Biological trace element research |
container_volume | 190 |
creator | Zhou, Hongming Jiao, Guangjun Dong, Meng Chi, Hai Wang, Hongliang Wu, Wenliang Liu, Haichun Ren, Shanwu Kong, Meng Li, Ci Zhang, Lu Chen, Yunzhen |
description | Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and
N
-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro. |
doi_str_mv | 10.1007/s12011-018-1574-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132736508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132131866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1ERZfCA3BBlrhwMfXYju0clxWlFStthZaz5U2cxm0St7Yj1BvvwBvyJHjZtkhIXMaH-eb3jD6E3gD9AJSq0wSMAhAKmkClBKmfoQVUVU2oYvQ5WlCQnIhai2P0MqVrSkGxmr9Ax5wKBiDZAt1tYu5D8oNvfIOXjW9Ladzgos0u4Y9hcvgsxNFmHybsJ3w-j3bCm5Rd2A02ZbL2Nw6v3DAkvO1jmK96nHuHLy_4l18_fi5vcqnjdvMVX9rcf7f3r9BRZ4fkXj-8J-jb2aft6pysN58vVss1aQTXmbhOa2jVTnaVdIKWq6xrO2a5ZKqTtRCSOsWYklQKtpON5pq3TFouoPQ7yU_Q-0PubQx3s0vZjD6VywY7uTAnw4AzxWVFdUHf_YNehzlOZbs_FHDQch8IB6qJIaXoOnMb_WjjvQFq9j7MwYcpPszeh6nLzNuH5Hk3uvZp4lFAAdgBSKU1Xbn49-v_p_4GDc2VOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132131866</pqid></control><display><type>article</type><title>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</title><source>Springer Nature</source><creator>Zhou, Hongming ; Jiao, Guangjun ; Dong, Meng ; Chi, Hai ; Wang, Hongliang ; Wu, Wenliang ; Liu, Haichun ; Ren, Shanwu ; Kong, Meng ; Li, Ci ; Zhang, Lu ; Chen, Yunzhen</creator><creatorcontrib>Zhou, Hongming ; Jiao, Guangjun ; Dong, Meng ; Chi, Hai ; Wang, Hongliang ; Wu, Wenliang ; Liu, Haichun ; Ren, Shanwu ; Kong, Meng ; Li, Ci ; Zhang, Lu ; Chen, Yunzhen</creatorcontrib><description>Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and
N
-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-018-1574-9</identifier><identifier>PMID: 30421162</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Phosphatidylinositol 3-kinase ; Acids ; AKT protein ; Alkaline phosphatase ; Animal diseases ; Animal research ; Biochemistry ; Biocompatibility ; Biomedical and Life Sciences ; Biomedical materials ; Biotechnology ; Bone density ; Bone diseases ; Bone growth ; Bones ; Cbfa-1 protein ; Collagen ; Collagen (type I) ; Dose-Response Relationship, Drug ; ELISA ; Enzyme-linked immunosorbent assay ; Enzymes ; Humans ; Immunofluorescence ; Kinases ; Life Sciences ; Mechanical properties ; Molecular modelling ; Nutrition ; Oncology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin ; Osteogenesis ; Osteogenesis - drug effects ; Osteoporosis ; Phosphatase ; Phosphates ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol 4,5-diphosphate ; Procollagen ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Rapamycin ; Signal Transduction - drug effects ; Silicic Acid - pharmacology ; Silicon ; Silicon - pharmacology ; Structure-Activity Relationship ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Trace elements ; Transcription ; Tumor Cells, Cultured</subject><ispartof>Biological trace element research, 2019-08, Vol.190 (2), p.327-335</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Biological Trace Element Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</citedby><cites>FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</cites><orcidid>0000-0001-8447-9001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30421162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hongming</creatorcontrib><creatorcontrib>Jiao, Guangjun</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Chi, Hai</creatorcontrib><creatorcontrib>Wang, Hongliang</creatorcontrib><creatorcontrib>Wu, Wenliang</creatorcontrib><creatorcontrib>Liu, Haichun</creatorcontrib><creatorcontrib>Ren, Shanwu</creatorcontrib><creatorcontrib>Kong, Meng</creatorcontrib><creatorcontrib>Li, Ci</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Chen, Yunzhen</creatorcontrib><title>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and
N
-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Acids</subject><subject>AKT protein</subject><subject>Alkaline phosphatase</subject><subject>Animal diseases</subject><subject>Animal research</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bone density</subject><subject>Bone diseases</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Cbfa-1 protein</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Dose-Response Relationship, Drug</subject><subject>ELISA</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mechanical properties</subject><subject>Molecular modelling</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol 4,5-diphosphate</subject><subject>Procollagen</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rapamycin</subject><subject>Signal Transduction - drug effects</subject><subject>Silicic Acid - pharmacology</subject><subject>Silicon</subject><subject>Silicon - pharmacology</subject><subject>Structure-Activity Relationship</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Trace elements</subject><subject>Transcription</subject><subject>Tumor Cells, Cultured</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1ERZfCA3BBlrhwMfXYju0clxWlFStthZaz5U2cxm0St7Yj1BvvwBvyJHjZtkhIXMaH-eb3jD6E3gD9AJSq0wSMAhAKmkClBKmfoQVUVU2oYvQ5WlCQnIhai2P0MqVrSkGxmr9Ax5wKBiDZAt1tYu5D8oNvfIOXjW9Ladzgos0u4Y9hcvgsxNFmHybsJ3w-j3bCm5Rd2A02ZbL2Nw6v3DAkvO1jmK96nHuHLy_4l18_fi5vcqnjdvMVX9rcf7f3r9BRZ4fkXj-8J-jb2aft6pysN58vVss1aQTXmbhOa2jVTnaVdIKWq6xrO2a5ZKqTtRCSOsWYklQKtpON5pq3TFouoPQ7yU_Q-0PubQx3s0vZjD6VywY7uTAnw4AzxWVFdUHf_YNehzlOZbs_FHDQch8IB6qJIaXoOnMb_WjjvQFq9j7MwYcpPszeh6nLzNuH5Hk3uvZp4lFAAdgBSKU1Xbn49-v_p_4GDc2VOg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Zhou, Hongming</creator><creator>Jiao, Guangjun</creator><creator>Dong, Meng</creator><creator>Chi, Hai</creator><creator>Wang, Hongliang</creator><creator>Wu, Wenliang</creator><creator>Liu, Haichun</creator><creator>Ren, Shanwu</creator><creator>Kong, Meng</creator><creator>Li, Ci</creator><creator>Zhang, Lu</creator><creator>Chen, Yunzhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8447-9001</orcidid></search><sort><creationdate>20190801</creationdate><title>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</title><author>Zhou, Hongming ; Jiao, Guangjun ; Dong, Meng ; Chi, Hai ; Wang, Hongliang ; Wu, Wenliang ; Liu, Haichun ; Ren, Shanwu ; Kong, Meng ; Li, Ci ; Zhang, Lu ; Chen, Yunzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Acids</topic><topic>AKT protein</topic><topic>Alkaline phosphatase</topic><topic>Animal diseases</topic><topic>Animal research</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bone density</topic><topic>Bone diseases</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Cbfa-1 protein</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Dose-Response Relationship, Drug</topic><topic>ELISA</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mechanical properties</topic><topic>Molecular modelling</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol 4,5-diphosphate</topic><topic>Procollagen</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rapamycin</topic><topic>Signal Transduction - drug effects</topic><topic>Silicic Acid - pharmacology</topic><topic>Silicon</topic><topic>Silicon - pharmacology</topic><topic>Structure-Activity Relationship</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Trace elements</topic><topic>Transcription</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hongming</creatorcontrib><creatorcontrib>Jiao, Guangjun</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Chi, Hai</creatorcontrib><creatorcontrib>Wang, Hongliang</creatorcontrib><creatorcontrib>Wu, Wenliang</creatorcontrib><creatorcontrib>Liu, Haichun</creatorcontrib><creatorcontrib>Ren, Shanwu</creatorcontrib><creatorcontrib>Kong, Meng</creatorcontrib><creatorcontrib>Li, Ci</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Chen, Yunzhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hongming</au><au>Jiao, Guangjun</au><au>Dong, Meng</au><au>Chi, Hai</au><au>Wang, Hongliang</au><au>Wu, Wenliang</au><au>Liu, Haichun</au><au>Ren, Shanwu</au><au>Kong, Meng</au><au>Li, Ci</au><au>Zhang, Lu</au><au>Chen, Yunzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>190</volume><issue>2</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and
N
-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30421162</pmid><doi>10.1007/s12011-018-1574-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8447-9001</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-4984 |
ispartof | Biological trace element research, 2019-08, Vol.190 (2), p.327-335 |
issn | 0163-4984 1559-0720 |
language | eng |
recordid | cdi_proquest_miscellaneous_2132736508 |
source | Springer Nature |
subjects | 1-Phosphatidylinositol 3-kinase Acids AKT protein Alkaline phosphatase Animal diseases Animal research Biochemistry Biocompatibility Biomedical and Life Sciences Biomedical materials Biotechnology Bone density Bone diseases Bone growth Bones Cbfa-1 protein Collagen Collagen (type I) Dose-Response Relationship, Drug ELISA Enzyme-linked immunosorbent assay Enzymes Humans Immunofluorescence Kinases Life Sciences Mechanical properties Molecular modelling Nutrition Oncology Osteoblasts - drug effects Osteoblasts - metabolism Osteocalcin Osteogenesis Osteogenesis - drug effects Osteoporosis Phosphatase Phosphates Phosphatidylinositol 3-Kinases - metabolism Phosphatidylinositol 4,5-diphosphate Procollagen Proteins Proto-Oncogene Proteins c-akt - metabolism Rapamycin Signal Transduction - drug effects Silicic Acid - pharmacology Silicon Silicon - pharmacology Structure-Activity Relationship TOR protein TOR Serine-Threonine Kinases - metabolism Trace elements Transcription Tumor Cells, Cultured |
title | Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthosilicic%20Acid%20Accelerates%20Bone%20Formation%20in%20Human%20Osteoblast-Like%20Cells%20Through%20the%20PI3K%E2%80%93Akt%E2%80%93mTOR%20Pathway&rft.jtitle=Biological%20trace%20element%20research&rft.au=Zhou,%20Hongming&rft.date=2019-08-01&rft.volume=190&rft.issue=2&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-018-1574-9&rft_dat=%3Cproquest_cross%3E2132131866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132131866&rft_id=info:pmid/30421162&rfr_iscdi=true |