Loading…

Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway

Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, th...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 2019-08, Vol.190 (2), p.327-335
Main Authors: Zhou, Hongming, Jiao, Guangjun, Dong, Meng, Chi, Hai, Wang, Hongliang, Wu, Wenliang, Liu, Haichun, Ren, Shanwu, Kong, Meng, Li, Ci, Zhang, Lu, Chen, Yunzhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63
cites cdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63
container_end_page 335
container_issue 2
container_start_page 327
container_title Biological trace element research
container_volume 190
creator Zhou, Hongming
Jiao, Guangjun
Dong, Meng
Chi, Hai
Wang, Hongliang
Wu, Wenliang
Liu, Haichun
Ren, Shanwu
Kong, Meng
Li, Ci
Zhang, Lu
Chen, Yunzhen
description Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N -terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.
doi_str_mv 10.1007/s12011-018-1574-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2132736508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132131866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1ERZfCA3BBlrhwMfXYju0clxWlFStthZaz5U2cxm0St7Yj1BvvwBvyJHjZtkhIXMaH-eb3jD6E3gD9AJSq0wSMAhAKmkClBKmfoQVUVU2oYvQ5WlCQnIhai2P0MqVrSkGxmr9Ax5wKBiDZAt1tYu5D8oNvfIOXjW9Ladzgos0u4Y9hcvgsxNFmHybsJ3w-j3bCm5Rd2A02ZbL2Nw6v3DAkvO1jmK96nHuHLy_4l18_fi5vcqnjdvMVX9rcf7f3r9BRZ4fkXj-8J-jb2aft6pysN58vVss1aQTXmbhOa2jVTnaVdIKWq6xrO2a5ZKqTtRCSOsWYklQKtpON5pq3TFouoPQ7yU_Q-0PubQx3s0vZjD6VywY7uTAnw4AzxWVFdUHf_YNehzlOZbs_FHDQch8IB6qJIaXoOnMb_WjjvQFq9j7MwYcpPszeh6nLzNuH5Hk3uvZp4lFAAdgBSKU1Xbn49-v_p_4GDc2VOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132131866</pqid></control><display><type>article</type><title>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</title><source>Springer Nature</source><creator>Zhou, Hongming ; Jiao, Guangjun ; Dong, Meng ; Chi, Hai ; Wang, Hongliang ; Wu, Wenliang ; Liu, Haichun ; Ren, Shanwu ; Kong, Meng ; Li, Ci ; Zhang, Lu ; Chen, Yunzhen</creator><creatorcontrib>Zhou, Hongming ; Jiao, Guangjun ; Dong, Meng ; Chi, Hai ; Wang, Hongliang ; Wu, Wenliang ; Liu, Haichun ; Ren, Shanwu ; Kong, Meng ; Li, Ci ; Zhang, Lu ; Chen, Yunzhen</creatorcontrib><description>Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N -terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-018-1574-9</identifier><identifier>PMID: 30421162</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Phosphatidylinositol 3-kinase ; Acids ; AKT protein ; Alkaline phosphatase ; Animal diseases ; Animal research ; Biochemistry ; Biocompatibility ; Biomedical and Life Sciences ; Biomedical materials ; Biotechnology ; Bone density ; Bone diseases ; Bone growth ; Bones ; Cbfa-1 protein ; Collagen ; Collagen (type I) ; Dose-Response Relationship, Drug ; ELISA ; Enzyme-linked immunosorbent assay ; Enzymes ; Humans ; Immunofluorescence ; Kinases ; Life Sciences ; Mechanical properties ; Molecular modelling ; Nutrition ; Oncology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin ; Osteogenesis ; Osteogenesis - drug effects ; Osteoporosis ; Phosphatase ; Phosphates ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol 4,5-diphosphate ; Procollagen ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Rapamycin ; Signal Transduction - drug effects ; Silicic Acid - pharmacology ; Silicon ; Silicon - pharmacology ; Structure-Activity Relationship ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Trace elements ; Transcription ; Tumor Cells, Cultured</subject><ispartof>Biological trace element research, 2019-08, Vol.190 (2), p.327-335</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Biological Trace Element Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</citedby><cites>FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</cites><orcidid>0000-0001-8447-9001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30421162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hongming</creatorcontrib><creatorcontrib>Jiao, Guangjun</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Chi, Hai</creatorcontrib><creatorcontrib>Wang, Hongliang</creatorcontrib><creatorcontrib>Wu, Wenliang</creatorcontrib><creatorcontrib>Liu, Haichun</creatorcontrib><creatorcontrib>Ren, Shanwu</creatorcontrib><creatorcontrib>Kong, Meng</creatorcontrib><creatorcontrib>Li, Ci</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Chen, Yunzhen</creatorcontrib><title>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N -terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Acids</subject><subject>AKT protein</subject><subject>Alkaline phosphatase</subject><subject>Animal diseases</subject><subject>Animal research</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bone density</subject><subject>Bone diseases</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Cbfa-1 protein</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Dose-Response Relationship, Drug</subject><subject>ELISA</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mechanical properties</subject><subject>Molecular modelling</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol 4,5-diphosphate</subject><subject>Procollagen</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rapamycin</subject><subject>Signal Transduction - drug effects</subject><subject>Silicic Acid - pharmacology</subject><subject>Silicon</subject><subject>Silicon - pharmacology</subject><subject>Structure-Activity Relationship</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Trace elements</subject><subject>Transcription</subject><subject>Tumor Cells, Cultured</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1ERZfCA3BBlrhwMfXYju0clxWlFStthZaz5U2cxm0St7Yj1BvvwBvyJHjZtkhIXMaH-eb3jD6E3gD9AJSq0wSMAhAKmkClBKmfoQVUVU2oYvQ5WlCQnIhai2P0MqVrSkGxmr9Ax5wKBiDZAt1tYu5D8oNvfIOXjW9Ladzgos0u4Y9hcvgsxNFmHybsJ3w-j3bCm5Rd2A02ZbL2Nw6v3DAkvO1jmK96nHuHLy_4l18_fi5vcqnjdvMVX9rcf7f3r9BRZ4fkXj-8J-jb2aft6pysN58vVss1aQTXmbhOa2jVTnaVdIKWq6xrO2a5ZKqTtRCSOsWYklQKtpON5pq3TFouoPQ7yU_Q-0PubQx3s0vZjD6VywY7uTAnw4AzxWVFdUHf_YNehzlOZbs_FHDQch8IB6qJIaXoOnMb_WjjvQFq9j7MwYcpPszeh6nLzNuH5Hk3uvZp4lFAAdgBSKU1Xbn49-v_p_4GDc2VOg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Zhou, Hongming</creator><creator>Jiao, Guangjun</creator><creator>Dong, Meng</creator><creator>Chi, Hai</creator><creator>Wang, Hongliang</creator><creator>Wu, Wenliang</creator><creator>Liu, Haichun</creator><creator>Ren, Shanwu</creator><creator>Kong, Meng</creator><creator>Li, Ci</creator><creator>Zhang, Lu</creator><creator>Chen, Yunzhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8447-9001</orcidid></search><sort><creationdate>20190801</creationdate><title>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</title><author>Zhou, Hongming ; Jiao, Guangjun ; Dong, Meng ; Chi, Hai ; Wang, Hongliang ; Wu, Wenliang ; Liu, Haichun ; Ren, Shanwu ; Kong, Meng ; Li, Ci ; Zhang, Lu ; Chen, Yunzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Acids</topic><topic>AKT protein</topic><topic>Alkaline phosphatase</topic><topic>Animal diseases</topic><topic>Animal research</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bone density</topic><topic>Bone diseases</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Cbfa-1 protein</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Dose-Response Relationship, Drug</topic><topic>ELISA</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mechanical properties</topic><topic>Molecular modelling</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol 4,5-diphosphate</topic><topic>Procollagen</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rapamycin</topic><topic>Signal Transduction - drug effects</topic><topic>Silicic Acid - pharmacology</topic><topic>Silicon</topic><topic>Silicon - pharmacology</topic><topic>Structure-Activity Relationship</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Trace elements</topic><topic>Transcription</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hongming</creatorcontrib><creatorcontrib>Jiao, Guangjun</creatorcontrib><creatorcontrib>Dong, Meng</creatorcontrib><creatorcontrib>Chi, Hai</creatorcontrib><creatorcontrib>Wang, Hongliang</creatorcontrib><creatorcontrib>Wu, Wenliang</creatorcontrib><creatorcontrib>Liu, Haichun</creatorcontrib><creatorcontrib>Ren, Shanwu</creatorcontrib><creatorcontrib>Kong, Meng</creatorcontrib><creatorcontrib>Li, Ci</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Chen, Yunzhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hongming</au><au>Jiao, Guangjun</au><au>Dong, Meng</au><au>Chi, Hai</au><au>Wang, Hongliang</au><au>Wu, Wenliang</au><au>Liu, Haichun</au><au>Ren, Shanwu</au><au>Kong, Meng</au><au>Li, Ci</au><au>Zhang, Lu</au><au>Chen, Yunzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>190</volume><issue>2</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N -terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K–Akt–mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K–Akt–mTOR pathway played a positive regulatory role in the process of orthosilicic acid–mediated osteogenesis in vitro.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30421162</pmid><doi>10.1007/s12011-018-1574-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8447-9001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0163-4984
ispartof Biological trace element research, 2019-08, Vol.190 (2), p.327-335
issn 0163-4984
1559-0720
language eng
recordid cdi_proquest_miscellaneous_2132736508
source Springer Nature
subjects 1-Phosphatidylinositol 3-kinase
Acids
AKT protein
Alkaline phosphatase
Animal diseases
Animal research
Biochemistry
Biocompatibility
Biomedical and Life Sciences
Biomedical materials
Biotechnology
Bone density
Bone diseases
Bone growth
Bones
Cbfa-1 protein
Collagen
Collagen (type I)
Dose-Response Relationship, Drug
ELISA
Enzyme-linked immunosorbent assay
Enzymes
Humans
Immunofluorescence
Kinases
Life Sciences
Mechanical properties
Molecular modelling
Nutrition
Oncology
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteocalcin
Osteogenesis
Osteogenesis - drug effects
Osteoporosis
Phosphatase
Phosphates
Phosphatidylinositol 3-Kinases - metabolism
Phosphatidylinositol 4,5-diphosphate
Procollagen
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Rapamycin
Signal Transduction - drug effects
Silicic Acid - pharmacology
Silicon
Silicon - pharmacology
Structure-Activity Relationship
TOR protein
TOR Serine-Threonine Kinases - metabolism
Trace elements
Transcription
Tumor Cells, Cultured
title Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K–Akt–mTOR Pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthosilicic%20Acid%20Accelerates%20Bone%20Formation%20in%20Human%20Osteoblast-Like%20Cells%20Through%20the%20PI3K%E2%80%93Akt%E2%80%93mTOR%20Pathway&rft.jtitle=Biological%20trace%20element%20research&rft.au=Zhou,%20Hongming&rft.date=2019-08-01&rft.volume=190&rft.issue=2&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-018-1574-9&rft_dat=%3Cproquest_cross%3E2132131866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-ef881d7b6f56e40559aedf2a3627f694460e722760642b6c8383d26a3417f6f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132131866&rft_id=info:pmid/30421162&rfr_iscdi=true