Loading…

Carcinogenic risk of copper gluconate evaluated by a rat medium-term liver carcinogenicity bioassay protocol

Carcinogenic risk and molecular mechanisms underlying the liver tumor-promoting activity of copper gluconate, an additive of functional foods, were investigated using a rat medium-term liver carcinogenicity bioassay protocol (Ito test) and a 2-week short-term administration experiment. In the medium...

Full description

Saved in:
Bibliographic Details
Published in:Archives of toxicology 2008-08, Vol.82 (8), p.563-571
Main Authors: Abe, Masayoshi, Usuda, Koji, Hayashi, Seigo, Ogawa, Izumi, Furukawa, Satoshi, Igarashi, Maki, Nakae, Dai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carcinogenic risk and molecular mechanisms underlying the liver tumor-promoting activity of copper gluconate, an additive of functional foods, were investigated using a rat medium-term liver carcinogenicity bioassay protocol (Ito test) and a 2-week short-term administration experiment. In the medium-term liver bioassay, Fischer 344 male rats were given a single i.p. injection of N -nitrosodiethylamine at a dose of 200 mg/kg b.w. as a carcinogenic initiator. Starting 2 weeks thereafter, rats received 0, 10, 300 or 6,000 ppm of copper gluconate in diet for 6 weeks. All rats underwent 2/3 partial hepatectomy at the end of week 3, and all surviving rats were killed at the end of week 8. In the short-term experiment, rats were given 0, 10, 300 or 6,000 ppm of copper gluconate for 2 weeks. Numbers of glutathione S -transferase placental form (GST-P) positive lesions, single GST-P-positive hepatocytes and 8-oxoguanine-positive hepatocytes, and levels of cell proliferation and apoptosis in the liver were significantly increased by 6,000 ppm of copper gluconate in the medium-term liver bioassay. Furthermore, hepatic mRNA expression of genes relating to the metal metabolism, inflammation and apoptosis were elevated by 6,000 ppm of copper gluconate both in the medium-term liver bioassay and the short-term experiments. These results indicate that copper gluconate possesses carcinogenic risk toward the liver at the high dose level, and that oxidative stress and inflammatory and pro-apoptotic signaling statuses may participate in its underlying mechanisms.
ISSN:0340-5761
1432-0738
DOI:10.1007/s00204-008-0294-x