Loading…

Crystal structures of Erythrina cristagalli lectin with bound N-linked oligosaccharide and lactose

Erythrina cristagalli lectin (ECL) is a galactose-specific legume lectin. Although its biological function in the legume is unknown, ECL exhibits hemagglutinating activity in vitro and is mitogenic for T lymphocytes. In addition, it has been recently shown that ECL forms a novel conjugate when coupl...

Full description

Saved in:
Bibliographic Details
Published in:Glycobiology (Oxford) 2004-10, Vol.14 (10), p.923-929
Main Authors: Turton, Kathryn, Natesh, Ramanathan, Thiyagarajan, Nethaji, Chaddock, John A., Acharya, K. Ravi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Erythrina cristagalli lectin (ECL) is a galactose-specific legume lectin. Although its biological function in the legume is unknown, ECL exhibits hemagglutinating activity in vitro and is mitogenic for T lymphocytes. In addition, it has been recently shown that ECL forms a novel conjugate when coupled to a catalytically active derivative of the type A neurotoxin from Clostridium botulinum, thus providing a therapeutic potential. ECL is biologically active as a dimer in which each protomer contains a functional carbohydrate-combining site. The crystal structure of native ECL was recently reported in complex with lactose and 2′-fucosyllactose. ECL protomers adopt the legume lectin fold but form non-canonical dimers via the handshake motif as was previously observed for Erythrina corallodendron lectin. Here we report the crystal structures of native and recombinant forms of the lectin in three new crystal forms, both unliganded and in complex with lactose. For the first time, the detailed structure of the glycosylated hexasaccharide for native ECL has been elucidated. The structure also shows that in the crystal lattice the glycosylation site and the carbohydrate binding site are involved in intermolecular contacts through water-mediated interactions.
ISSN:0959-6658
1460-2423
1460-2423
DOI:10.1093/glycob/cwh114