Loading…
Temporal and Reversible Control of a DNAzyme by Orthogonal Photoswitching
The reversible switching of catalytic systems capable of performing complex DNA computing operations using the temporal control of two orthogonal photoswitches is described. Two distinct photoresponsive molecules have been separately incorporated into a split horseradish peroxidase-mimicking DNAzym...
Saved in:
Published in: | Journal of the American Chemical Society 2018-12, Vol.140 (49), p.16868-16872 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reversible switching of catalytic systems capable of performing complex DNA computing operations using the temporal control of two orthogonal photoswitches is described. Two distinct photoresponsive molecules have been separately incorporated into a split horseradish peroxidase-mimicking DNAzyme. We show that its catalytic function can be turned on and off reversibly upon irradiation with specific wavelengths of light. The system responds orthogonally to a selection of irradiation wavelengths and durations of irradiation. Furthermore, the DNAzyme exhibits reversible switching and retains this ability throughout multiple switching cycles. We apply our system as a light-controlled 4:2 multiplexer. Orthogonally photoswitchable DNAzyme-based catalysts as introduced here have potential use for controlling complex logical operations and for future applications in DNA nanodevices. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b08738 |