Loading…

Applying machine learning to the flagellar motor for biosensing

Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosenso...

Full description

Saved in:
Bibliographic Details
Main Authors: Zajdel, Tom J., Nam, Andrew, Yuan, Jove, Shirsat, Vikram R., Rad, Behzad, Maharbiz, Michel M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 2018
creator Zajdel, Tom J.
Nam, Andrew
Yuan, Jove
Shirsat, Vikram R.
Rad, Behzad
Maharbiz, Michel M.
description Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.
doi_str_mv 10.1109/EMBC.2018.8512907
format conference_proceeding
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2135131347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8512907</ieee_id><sourcerecordid>2135131347</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-94ae4c128610c1e7bf9f4c505a732720221fb5b572d5c72e574b37dc80e617103</originalsourceid><addsrcrecordid>eNotkEtLw0AUhUdBsNb-AHGTpZvEe-edldRSH1Bxo-swmd60I3mZSRf9921pF4cDh4_D4TD2gJAhQv68_HpdZBzQZlYhz8FcsVluLCphtdBS62s2QaVsKjWqW3YX4x8AB1A4YS_zvq_3od0kjfPb0FJSkxvaUzB2ybilpKrdhuraDUnTjd2QVEeVoYvUxiN1z24qV0eaXXzKft-WP4uPdPX9_rmYr9LAwY5pLh1Jj9xqBI9kyiqvpFegnBHccOAcq1KVyvC18oaTMrIUZu0tkEaDIKbs6dzbD93_juJYNCH6066Wul0sOAqFAoU0R_TxjAYiKvohNG7YF5drxAHtflYi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2135131347</pqid></control><display><type>conference_proceeding</type><title>Applying machine learning to the flagellar motor for biosensing</title><source>IEEE Xplore All Conference Series</source><creator>Zajdel, Tom J. ; Nam, Andrew ; Yuan, Jove ; Shirsat, Vikram R. ; Rad, Behzad ; Maharbiz, Michel M.</creator><creatorcontrib>Zajdel, Tom J. ; Nam, Andrew ; Yuan, Jove ; Shirsat, Vikram R. ; Rad, Behzad ; Maharbiz, Michel M.</creatorcontrib><description>Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.</description><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781538636466</identifier><identifier>EISBN: 1538636468</identifier><identifier>DOI: 10.1109/EMBC.2018.8512907</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biosensors ; Feature extraction ; Hysteresis motors ; Microorganisms ; Microscopy ; Sociology ; Statistics</subject><ispartof>2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, Vol.2018, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zajdel, Tom J.</creatorcontrib><creatorcontrib>Nam, Andrew</creatorcontrib><creatorcontrib>Yuan, Jove</creatorcontrib><creatorcontrib>Shirsat, Vikram R.</creatorcontrib><creatorcontrib>Rad, Behzad</creatorcontrib><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><title>Applying machine learning to the flagellar motor for biosensing</title><title>2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.</description><subject>Biosensors</subject><subject>Feature extraction</subject><subject>Hysteresis motors</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781538636466</isbn><isbn>1538636468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLw0AUhUdBsNb-AHGTpZvEe-edldRSH1Bxo-swmd60I3mZSRf9921pF4cDh4_D4TD2gJAhQv68_HpdZBzQZlYhz8FcsVluLCphtdBS62s2QaVsKjWqW3YX4x8AB1A4YS_zvq_3od0kjfPb0FJSkxvaUzB2ybilpKrdhuraDUnTjd2QVEeVoYvUxiN1z24qV0eaXXzKft-WP4uPdPX9_rmYr9LAwY5pLh1Jj9xqBI9kyiqvpFegnBHccOAcq1KVyvC18oaTMrIUZu0tkEaDIKbs6dzbD93_juJYNCH6066Wul0sOAqFAoU0R_TxjAYiKvohNG7YF5drxAHtflYi</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zajdel, Tom J.</creator><creator>Nam, Andrew</creator><creator>Yuan, Jove</creator><creator>Shirsat, Vikram R.</creator><creator>Rad, Behzad</creator><creator>Maharbiz, Michel M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Applying machine learning to the flagellar motor for biosensing</title><author>Zajdel, Tom J. ; Nam, Andrew ; Yuan, Jove ; Shirsat, Vikram R. ; Rad, Behzad ; Maharbiz, Michel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-94ae4c128610c1e7bf9f4c505a732720221fb5b572d5c72e574b37dc80e617103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biosensors</topic><topic>Feature extraction</topic><topic>Hysteresis motors</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zajdel, Tom J.</creatorcontrib><creatorcontrib>Nam, Andrew</creatorcontrib><creatorcontrib>Yuan, Jove</creatorcontrib><creatorcontrib>Shirsat, Vikram R.</creatorcontrib><creatorcontrib>Rad, Behzad</creatorcontrib><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zajdel, Tom J.</au><au>Nam, Andrew</au><au>Yuan, Jove</au><au>Shirsat, Vikram R.</au><au>Rad, Behzad</au><au>Maharbiz, Michel M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying machine learning to the flagellar motor for biosensing</atitle><btitle>2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>2018</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1558-4615</eissn><eissn>2694-0604</eissn><eisbn>9781538636466</eisbn><eisbn>1538636468</eisbn><abstract>Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.</abstract><pub>IEEE</pub><doi>10.1109/EMBC.2018.8512907</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1558-4615
ispartof 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, Vol.2018, p.1-4
issn 1558-4615
2694-0604
language eng
recordid cdi_proquest_miscellaneous_2135131347
source IEEE Xplore All Conference Series
subjects Biosensors
Feature extraction
Hysteresis motors
Microorganisms
Microscopy
Sociology
Statistics
title Applying machine learning to the flagellar motor for biosensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20machine%20learning%20to%20the%20flagellar%20motor%20for%20biosensing&rft.btitle=2018%2040th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Zajdel,%20Tom%20J.&rft.date=2018-07-01&rft.volume=2018&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2018.8512907&rft.eisbn=9781538636466&rft.eisbn_list=1538636468&rft_dat=%3Cproquest_ieee_%3E2135131347%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-94ae4c128610c1e7bf9f4c505a732720221fb5b572d5c72e574b37dc80e617103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2135131347&rft_id=info:pmid/&rft_ieee_id=8512907&rfr_iscdi=true