Loading…
Applying machine learning to the flagellar motor for biosensing
Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosenso...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 2018 |
creator | Zajdel, Tom J. Nam, Andrew Yuan, Jove Shirsat, Vikram R. Rad, Behzad Maharbiz, Michel M. |
description | Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing. |
doi_str_mv | 10.1109/EMBC.2018.8512907 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2135131347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8512907</ieee_id><sourcerecordid>2135131347</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-94ae4c128610c1e7bf9f4c505a732720221fb5b572d5c72e574b37dc80e617103</originalsourceid><addsrcrecordid>eNotkEtLw0AUhUdBsNb-AHGTpZvEe-edldRSH1Bxo-swmd60I3mZSRf9921pF4cDh4_D4TD2gJAhQv68_HpdZBzQZlYhz8FcsVluLCphtdBS62s2QaVsKjWqW3YX4x8AB1A4YS_zvq_3od0kjfPb0FJSkxvaUzB2ybilpKrdhuraDUnTjd2QVEeVoYvUxiN1z24qV0eaXXzKft-WP4uPdPX9_rmYr9LAwY5pLh1Jj9xqBI9kyiqvpFegnBHccOAcq1KVyvC18oaTMrIUZu0tkEaDIKbs6dzbD93_juJYNCH6066Wul0sOAqFAoU0R_TxjAYiKvohNG7YF5drxAHtflYi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2135131347</pqid></control><display><type>conference_proceeding</type><title>Applying machine learning to the flagellar motor for biosensing</title><source>IEEE Xplore All Conference Series</source><creator>Zajdel, Tom J. ; Nam, Andrew ; Yuan, Jove ; Shirsat, Vikram R. ; Rad, Behzad ; Maharbiz, Michel M.</creator><creatorcontrib>Zajdel, Tom J. ; Nam, Andrew ; Yuan, Jove ; Shirsat, Vikram R. ; Rad, Behzad ; Maharbiz, Michel M.</creatorcontrib><description>Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.</description><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781538636466</identifier><identifier>EISBN: 1538636468</identifier><identifier>DOI: 10.1109/EMBC.2018.8512907</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biosensors ; Feature extraction ; Hysteresis motors ; Microorganisms ; Microscopy ; Sociology ; Statistics</subject><ispartof>2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, Vol.2018, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zajdel, Tom J.</creatorcontrib><creatorcontrib>Nam, Andrew</creatorcontrib><creatorcontrib>Yuan, Jove</creatorcontrib><creatorcontrib>Shirsat, Vikram R.</creatorcontrib><creatorcontrib>Rad, Behzad</creatorcontrib><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><title>Applying machine learning to the flagellar motor for biosensing</title><title>2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.</description><subject>Biosensors</subject><subject>Feature extraction</subject><subject>Hysteresis motors</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781538636466</isbn><isbn>1538636468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLw0AUhUdBsNb-AHGTpZvEe-edldRSH1Bxo-swmd60I3mZSRf9921pF4cDh4_D4TD2gJAhQv68_HpdZBzQZlYhz8FcsVluLCphtdBS62s2QaVsKjWqW3YX4x8AB1A4YS_zvq_3od0kjfPb0FJSkxvaUzB2ybilpKrdhuraDUnTjd2QVEeVoYvUxiN1z24qV0eaXXzKft-WP4uPdPX9_rmYr9LAwY5pLh1Jj9xqBI9kyiqvpFegnBHccOAcq1KVyvC18oaTMrIUZu0tkEaDIKbs6dzbD93_juJYNCH6066Wul0sOAqFAoU0R_TxjAYiKvohNG7YF5drxAHtflYi</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zajdel, Tom J.</creator><creator>Nam, Andrew</creator><creator>Yuan, Jove</creator><creator>Shirsat, Vikram R.</creator><creator>Rad, Behzad</creator><creator>Maharbiz, Michel M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Applying machine learning to the flagellar motor for biosensing</title><author>Zajdel, Tom J. ; Nam, Andrew ; Yuan, Jove ; Shirsat, Vikram R. ; Rad, Behzad ; Maharbiz, Michel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-94ae4c128610c1e7bf9f4c505a732720221fb5b572d5c72e574b37dc80e617103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biosensors</topic><topic>Feature extraction</topic><topic>Hysteresis motors</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zajdel, Tom J.</creatorcontrib><creatorcontrib>Nam, Andrew</creatorcontrib><creatorcontrib>Yuan, Jove</creatorcontrib><creatorcontrib>Shirsat, Vikram R.</creatorcontrib><creatorcontrib>Rad, Behzad</creatorcontrib><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zajdel, Tom J.</au><au>Nam, Andrew</au><au>Yuan, Jove</au><au>Shirsat, Vikram R.</au><au>Rad, Behzad</au><au>Maharbiz, Michel M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying machine learning to the flagellar motor for biosensing</atitle><btitle>2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>2018</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1558-4615</eissn><eissn>2694-0604</eissn><eisbn>9781538636466</eisbn><eisbn>1538636468</eisbn><abstract>Escherichia coli detects and follows chemical gradients in its environment in a process known as chemotaxis. The performance of chemotaxis approaches fundamental biosensor speed and sensitivity limits, but there have been relatively few attempts to incorporate the response into a functional biosensor. Toward that end, we have developed software to process digital microscope images of a large number of tethered E. coli responding to different chemical perturbations. Upwards of fifty cells can be recorded in one experiment, allowing for rapid labeling of the chemotactic responses of multiple cells. After we collected hundreds of wild-type chemotactic E. coli motor responses to dilutions of aspartate and leucine, we trained a support vector classifier (SVC) to estimate the order of magnitude of aspartate concentration between 0M, 100nM, and 1μM with a single cell classification subset accuracy of 69%. We trained another SVC to differentiate between aspartate and leucine with a single cell classification subset accuracy of 83%. Using a majority-vote method on a bacterial population of size N, estimates have 95% confidence for N = 27 bacteria for concentration detection and N = 9 bacteria for chemical differentiation. These methods are a step towards adaptable chemotaxis-based biosensing.</abstract><pub>IEEE</pub><doi>10.1109/EMBC.2018.8512907</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1558-4615 |
ispartof | 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, Vol.2018, p.1-4 |
issn | 1558-4615 2694-0604 |
language | eng |
recordid | cdi_proquest_miscellaneous_2135131347 |
source | IEEE Xplore All Conference Series |
subjects | Biosensors Feature extraction Hysteresis motors Microorganisms Microscopy Sociology Statistics |
title | Applying machine learning to the flagellar motor for biosensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20machine%20learning%20to%20the%20flagellar%20motor%20for%20biosensing&rft.btitle=2018%2040th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Zajdel,%20Tom%20J.&rft.date=2018-07-01&rft.volume=2018&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2018.8512907&rft.eisbn=9781538636466&rft.eisbn_list=1538636468&rft_dat=%3Cproquest_ieee_%3E2135131347%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-94ae4c128610c1e7bf9f4c505a732720221fb5b572d5c72e574b37dc80e617103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2135131347&rft_id=info:pmid/&rft_ieee_id=8512907&rfr_iscdi=true |