Loading…
Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene
Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals o...
Saved in:
Published in: | Photochemistry and photobiology 2019-05, Vol.95 (3), p.780-786 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03 |
---|---|
cites | cdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03 |
container_end_page | 786 |
container_issue | 3 |
container_start_page | 780 |
container_title | Photochemistry and photobiology |
container_volume | 95 |
creator | Fedorova, Galina F. Lapina, Viktoryia A. Menshov, Valery A. Naumov, Vladimir V. Trofimov, Aleksei V. Tsaplev, Yury B. Vasil'ev, Rostislav F. Yablonskaya, Olga I. |
description | Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics.
Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude. |
doi_str_mv | 10.1111/php.13058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137469468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226417184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</originalsourceid><addsrcrecordid>eNp1kU9u1DAUhy0EokNhwQVQJDawSGvHdpywq4Y_rVTUUaFry7Gfm1SJncaOmOw4AifgcJyknk7LAgkvbPnp8-en90PoNcFHJK3jsR2PCMW8eoJWRHCSE1yLp2iFMSV5VXJ-gF6EcIMxYbUgz9EBxUwQUtAV-n01GhU7d53FFrJ1C0PXz0PnIGhwGrKL7XIN7s_PXyc2wgTWgo7ZV4itN5n1U_YRUjnxj4ZLFZPGuxCVi5m398UNTH67JMmlMp1WffYNeru7gtKx8-5D-qbbteHd7sl60b1vYQsOXqJnVvUBXj2ch-jq86fv69P8_OLL2frkPNeU0yo3poGG1mknVjMubFnjEnRjNK6ZqIUyIAhmGAQ0NYOKK66xsQys4thaTA_Ru713nPztDCHKoUsT6HvlwM9BFoQKVtasrBL69h_0xs-TS93JoihKRgSpWKLe7yk9-RDS4OQ4dYOaFkmw3IUmU2jyPrTEvnkwzs0A5i_5mFICjvfAj66H5f8muTnd7JV3Gb6m9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226417184</pqid></control><display><type>article</type><title>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fedorova, Galina F. ; Lapina, Viktoryia A. ; Menshov, Valery A. ; Naumov, Vladimir V. ; Trofimov, Aleksei V. ; Tsaplev, Yury B. ; Vasil'ev, Rostislav F. ; Yablonskaya, Olga I.</creator><creatorcontrib>Fedorova, Galina F. ; Lapina, Viktoryia A. ; Menshov, Valery A. ; Naumov, Vladimir V. ; Trofimov, Aleksei V. ; Tsaplev, Yury B. ; Vasil'ev, Rostislav F. ; Yablonskaya, Olga I.</creatorcontrib><description>Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics.
Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.13058</identifier><identifier>PMID: 30471123</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Chains ; Chemiluminescence ; Computer simulation ; Cyclohexene ; Hydrocarbons ; Kinetics ; Mathematical models ; Organic chemistry ; Oxidation ; Oxidation process ; Oxygen ; Peroxy radicals ; Radicals ; Reaction kinetics ; Substrates</subject><ispartof>Photochemistry and photobiology, 2019-05, Vol.95 (3), p.780-786</ispartof><rights>2018 The American Society of Photobiology</rights><rights>2018 The American Society of Photobiology.</rights><rights>2019 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</citedby><cites>FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30471123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fedorova, Galina F.</creatorcontrib><creatorcontrib>Lapina, Viktoryia A.</creatorcontrib><creatorcontrib>Menshov, Valery A.</creatorcontrib><creatorcontrib>Naumov, Vladimir V.</creatorcontrib><creatorcontrib>Trofimov, Aleksei V.</creatorcontrib><creatorcontrib>Tsaplev, Yury B.</creatorcontrib><creatorcontrib>Vasil'ev, Rostislav F.</creatorcontrib><creatorcontrib>Yablonskaya, Olga I.</creatorcontrib><title>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics.
Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.</description><subject>Chains</subject><subject>Chemiluminescence</subject><subject>Computer simulation</subject><subject>Cyclohexene</subject><subject>Hydrocarbons</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation process</subject><subject>Oxygen</subject><subject>Peroxy radicals</subject><subject>Radicals</subject><subject>Reaction kinetics</subject><subject>Substrates</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9u1DAUhy0EokNhwQVQJDawSGvHdpywq4Y_rVTUUaFry7Gfm1SJncaOmOw4AifgcJyknk7LAgkvbPnp8-en90PoNcFHJK3jsR2PCMW8eoJWRHCSE1yLp2iFMSV5VXJ-gF6EcIMxYbUgz9EBxUwQUtAV-n01GhU7d53FFrJ1C0PXz0PnIGhwGrKL7XIN7s_PXyc2wgTWgo7ZV4itN5n1U_YRUjnxj4ZLFZPGuxCVi5m398UNTH67JMmlMp1WffYNeru7gtKx8-5D-qbbteHd7sl60b1vYQsOXqJnVvUBXj2ch-jq86fv69P8_OLL2frkPNeU0yo3poGG1mknVjMubFnjEnRjNK6ZqIUyIAhmGAQ0NYOKK66xsQys4thaTA_Ru713nPztDCHKoUsT6HvlwM9BFoQKVtasrBL69h_0xs-TS93JoihKRgSpWKLe7yk9-RDS4OQ4dYOaFkmw3IUmU2jyPrTEvnkwzs0A5i_5mFICjvfAj66H5f8muTnd7JV3Gb6m9g</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Fedorova, Galina F.</creator><creator>Lapina, Viktoryia A.</creator><creator>Menshov, Valery A.</creator><creator>Naumov, Vladimir V.</creator><creator>Trofimov, Aleksei V.</creator><creator>Tsaplev, Yury B.</creator><creator>Vasil'ev, Rostislav F.</creator><creator>Yablonskaya, Olga I.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201905</creationdate><title>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</title><author>Fedorova, Galina F. ; Lapina, Viktoryia A. ; Menshov, Valery A. ; Naumov, Vladimir V. ; Trofimov, Aleksei V. ; Tsaplev, Yury B. ; Vasil'ev, Rostislav F. ; Yablonskaya, Olga I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chains</topic><topic>Chemiluminescence</topic><topic>Computer simulation</topic><topic>Cyclohexene</topic><topic>Hydrocarbons</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation process</topic><topic>Oxygen</topic><topic>Peroxy radicals</topic><topic>Radicals</topic><topic>Reaction kinetics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorova, Galina F.</creatorcontrib><creatorcontrib>Lapina, Viktoryia A.</creatorcontrib><creatorcontrib>Menshov, Valery A.</creatorcontrib><creatorcontrib>Naumov, Vladimir V.</creatorcontrib><creatorcontrib>Trofimov, Aleksei V.</creatorcontrib><creatorcontrib>Tsaplev, Yury B.</creatorcontrib><creatorcontrib>Vasil'ev, Rostislav F.</creatorcontrib><creatorcontrib>Yablonskaya, Olga I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorova, Galina F.</au><au>Lapina, Viktoryia A.</au><au>Menshov, Valery A.</au><au>Naumov, Vladimir V.</au><au>Trofimov, Aleksei V.</au><au>Tsaplev, Yury B.</au><au>Vasil'ev, Rostislav F.</au><au>Yablonskaya, Olga I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>95</volume><issue>3</issue><spage>780</spage><epage>786</epage><pages>780-786</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><abstract>Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics.
Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30471123</pmid><doi>10.1111/php.13058</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2019-05, Vol.95 (3), p.780-786 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_proquest_miscellaneous_2137469468 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chains Chemiluminescence Computer simulation Cyclohexene Hydrocarbons Kinetics Mathematical models Organic chemistry Oxidation Oxidation process Oxygen Peroxy radicals Radicals Reaction kinetics Substrates |
title | Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Updating%20the%20Chemiluminescence%20Oxygen%E2%80%90Aftereffect%20Method%20for%20Determining%20the%20Rate%20Constant%20of%20the%20Peroxy%E2%80%90Radical%20Self%E2%80%90Reaction:%20Oxidation%20of%20Cyclohexene&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Fedorova,%20Galina%20F.&rft.date=2019-05&rft.volume=95&rft.issue=3&rft.spage=780&rft.epage=786&rft.pages=780-786&rft.issn=0031-8655&rft.eissn=1751-1097&rft_id=info:doi/10.1111/php.13058&rft_dat=%3Cproquest_cross%3E2226417184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2226417184&rft_id=info:pmid/30471123&rfr_iscdi=true |