Loading…

Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene

Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals o...

Full description

Saved in:
Bibliographic Details
Published in:Photochemistry and photobiology 2019-05, Vol.95 (3), p.780-786
Main Authors: Fedorova, Galina F., Lapina, Viktoryia A., Menshov, Valery A., Naumov, Vladimir V., Trofimov, Aleksei V., Tsaplev, Yury B., Vasil'ev, Rostislav F., Yablonskaya, Olga I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03
cites cdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03
container_end_page 786
container_issue 3
container_start_page 780
container_title Photochemistry and photobiology
container_volume 95
creator Fedorova, Galina F.
Lapina, Viktoryia A.
Menshov, Valery A.
Naumov, Vladimir V.
Trofimov, Aleksei V.
Tsaplev, Yury B.
Vasil'ev, Rostislav F.
Yablonskaya, Olga I.
description Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics. Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.
doi_str_mv 10.1111/php.13058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2137469468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226417184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</originalsourceid><addsrcrecordid>eNp1kU9u1DAUhy0EokNhwQVQJDawSGvHdpywq4Y_rVTUUaFry7Gfm1SJncaOmOw4AifgcJyknk7LAgkvbPnp8-en90PoNcFHJK3jsR2PCMW8eoJWRHCSE1yLp2iFMSV5VXJ-gF6EcIMxYbUgz9EBxUwQUtAV-n01GhU7d53FFrJ1C0PXz0PnIGhwGrKL7XIN7s_PXyc2wgTWgo7ZV4itN5n1U_YRUjnxj4ZLFZPGuxCVi5m398UNTH67JMmlMp1WffYNeru7gtKx8-5D-qbbteHd7sl60b1vYQsOXqJnVvUBXj2ch-jq86fv69P8_OLL2frkPNeU0yo3poGG1mknVjMubFnjEnRjNK6ZqIUyIAhmGAQ0NYOKK66xsQys4thaTA_Ru713nPztDCHKoUsT6HvlwM9BFoQKVtasrBL69h_0xs-TS93JoihKRgSpWKLe7yk9-RDS4OQ4dYOaFkmw3IUmU2jyPrTEvnkwzs0A5i_5mFICjvfAj66H5f8muTnd7JV3Gb6m9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226417184</pqid></control><display><type>article</type><title>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fedorova, Galina F. ; Lapina, Viktoryia A. ; Menshov, Valery A. ; Naumov, Vladimir V. ; Trofimov, Aleksei V. ; Tsaplev, Yury B. ; Vasil'ev, Rostislav F. ; Yablonskaya, Olga I.</creator><creatorcontrib>Fedorova, Galina F. ; Lapina, Viktoryia A. ; Menshov, Valery A. ; Naumov, Vladimir V. ; Trofimov, Aleksei V. ; Tsaplev, Yury B. ; Vasil'ev, Rostislav F. ; Yablonskaya, Olga I.</creatorcontrib><description>Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics. Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.13058</identifier><identifier>PMID: 30471123</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Chains ; Chemiluminescence ; Computer simulation ; Cyclohexene ; Hydrocarbons ; Kinetics ; Mathematical models ; Organic chemistry ; Oxidation ; Oxidation process ; Oxygen ; Peroxy radicals ; Radicals ; Reaction kinetics ; Substrates</subject><ispartof>Photochemistry and photobiology, 2019-05, Vol.95 (3), p.780-786</ispartof><rights>2018 The American Society of Photobiology</rights><rights>2018 The American Society of Photobiology.</rights><rights>2019 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</citedby><cites>FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30471123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fedorova, Galina F.</creatorcontrib><creatorcontrib>Lapina, Viktoryia A.</creatorcontrib><creatorcontrib>Menshov, Valery A.</creatorcontrib><creatorcontrib>Naumov, Vladimir V.</creatorcontrib><creatorcontrib>Trofimov, Aleksei V.</creatorcontrib><creatorcontrib>Tsaplev, Yury B.</creatorcontrib><creatorcontrib>Vasil'ev, Rostislav F.</creatorcontrib><creatorcontrib>Yablonskaya, Olga I.</creatorcontrib><title>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics. Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.</description><subject>Chains</subject><subject>Chemiluminescence</subject><subject>Computer simulation</subject><subject>Cyclohexene</subject><subject>Hydrocarbons</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation process</subject><subject>Oxygen</subject><subject>Peroxy radicals</subject><subject>Radicals</subject><subject>Reaction kinetics</subject><subject>Substrates</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9u1DAUhy0EokNhwQVQJDawSGvHdpywq4Y_rVTUUaFry7Gfm1SJncaOmOw4AifgcJyknk7LAgkvbPnp8-en90PoNcFHJK3jsR2PCMW8eoJWRHCSE1yLp2iFMSV5VXJ-gF6EcIMxYbUgz9EBxUwQUtAV-n01GhU7d53FFrJ1C0PXz0PnIGhwGrKL7XIN7s_PXyc2wgTWgo7ZV4itN5n1U_YRUjnxj4ZLFZPGuxCVi5m398UNTH67JMmlMp1WffYNeru7gtKx8-5D-qbbteHd7sl60b1vYQsOXqJnVvUBXj2ch-jq86fv69P8_OLL2frkPNeU0yo3poGG1mknVjMubFnjEnRjNK6ZqIUyIAhmGAQ0NYOKK66xsQys4thaTA_Ru713nPztDCHKoUsT6HvlwM9BFoQKVtasrBL69h_0xs-TS93JoihKRgSpWKLe7yk9-RDS4OQ4dYOaFkmw3IUmU2jyPrTEvnkwzs0A5i_5mFICjvfAj66H5f8muTnd7JV3Gb6m9g</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Fedorova, Galina F.</creator><creator>Lapina, Viktoryia A.</creator><creator>Menshov, Valery A.</creator><creator>Naumov, Vladimir V.</creator><creator>Trofimov, Aleksei V.</creator><creator>Tsaplev, Yury B.</creator><creator>Vasil'ev, Rostislav F.</creator><creator>Yablonskaya, Olga I.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201905</creationdate><title>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</title><author>Fedorova, Galina F. ; Lapina, Viktoryia A. ; Menshov, Valery A. ; Naumov, Vladimir V. ; Trofimov, Aleksei V. ; Tsaplev, Yury B. ; Vasil'ev, Rostislav F. ; Yablonskaya, Olga I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chains</topic><topic>Chemiluminescence</topic><topic>Computer simulation</topic><topic>Cyclohexene</topic><topic>Hydrocarbons</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation process</topic><topic>Oxygen</topic><topic>Peroxy radicals</topic><topic>Radicals</topic><topic>Reaction kinetics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorova, Galina F.</creatorcontrib><creatorcontrib>Lapina, Viktoryia A.</creatorcontrib><creatorcontrib>Menshov, Valery A.</creatorcontrib><creatorcontrib>Naumov, Vladimir V.</creatorcontrib><creatorcontrib>Trofimov, Aleksei V.</creatorcontrib><creatorcontrib>Tsaplev, Yury B.</creatorcontrib><creatorcontrib>Vasil'ev, Rostislav F.</creatorcontrib><creatorcontrib>Yablonskaya, Olga I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorova, Galina F.</au><au>Lapina, Viktoryia A.</au><au>Menshov, Valery A.</au><au>Naumov, Vladimir V.</au><au>Trofimov, Aleksei V.</au><au>Tsaplev, Yury B.</au><au>Vasil'ev, Rostislav F.</au><au>Yablonskaya, Olga I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>95</volume><issue>3</issue><spage>780</spage><epage>786</epage><pages>780-786</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><abstract>Updating the facile chemiluminescence oxygen‐aftereffect method, most suitable for determining the rate constant (kt) of the peroxy‐radical self‐reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m−1 s−1. Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited‐state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen‐aftereffect method has been found independent of variation of these characteristics. Upon a fast admission of oxygen to a deoxygenated solution of a hydrocarbon to be oxidized and an initiator of the chain oxidation process, the intensity (J) of chemiluminescence emission rises from zero to its stationary level. The time profile of the light intensity, J(t), serves for acquiring the value of rate constant kt of the peroxy‐radical self‐reaction. The validity of this experimental approach has been demonstrated through computational modeling of the reaction kinetics upon the variation of the rate constants of the elementary steps of the chain oxidation process in the range of two orders of magnitude.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30471123</pmid><doi>10.1111/php.13058</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8655
ispartof Photochemistry and photobiology, 2019-05, Vol.95 (3), p.780-786
issn 0031-8655
1751-1097
language eng
recordid cdi_proquest_miscellaneous_2137469468
source Wiley-Blackwell Read & Publish Collection
subjects Chains
Chemiluminescence
Computer simulation
Cyclohexene
Hydrocarbons
Kinetics
Mathematical models
Organic chemistry
Oxidation
Oxidation process
Oxygen
Peroxy radicals
Radicals
Reaction kinetics
Substrates
title Updating the Chemiluminescence Oxygen‐Aftereffect Method for Determining the Rate Constant of the Peroxy‐Radical Self‐Reaction: Oxidation of Cyclohexene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Updating%20the%20Chemiluminescence%20Oxygen%E2%80%90Aftereffect%20Method%20for%20Determining%20the%20Rate%20Constant%20of%20the%20Peroxy%E2%80%90Radical%20Self%E2%80%90Reaction:%20Oxidation%20of%20Cyclohexene&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Fedorova,%20Galina%20F.&rft.date=2019-05&rft.volume=95&rft.issue=3&rft.spage=780&rft.epage=786&rft.pages=780-786&rft.issn=0031-8655&rft.eissn=1751-1097&rft_id=info:doi/10.1111/php.13058&rft_dat=%3Cproquest_cross%3E2226417184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3538-ddbeb39dbe1fc457f6906ecbdc094797ade71040e7eb94e85a5c0df4efa50ff03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2226417184&rft_id=info:pmid/30471123&rfr_iscdi=true