Loading…

Integration of performance, molecular biology and modeling to describe the activated sludge process

To study process performance and population dynamics in activated sludge, a pilot-scale Membrane Bioreactor (MBR) was installed in a municipal wastewater treatment plant (Aubergenville, France). Since no solids losses occur in the MBR effluent, the sludge residence time (SRT) can be: i) easily contr...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 1998, Vol.37 (4-5), p.223-229
Main Authors: Urbain, V., Mobarry, B., de Silva, V., Stahl, D.A., Rittmann, B.E., Manem, J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To study process performance and population dynamics in activated sludge, a pilot-scale Membrane Bioreactor (MBR) was installed in a municipal wastewater treatment plant (Aubergenville, France). Since no solids losses occur in the MBR effluent, the sludge residence time (SRT) can be: i) easily controlled by means of the sludge withdrawal, and ii) dissociated from the hydraulic residence time (HRT). A complete characterization of this activated sludge system was performed at three sludge ages (5, 10 and 20 days). Raw and treated wastewater quality, as well as sludge concentration, was analyzed, nucleic probe analysts was performed to determine the heterotrophic and nitrifier populations, and the results were compared to the output from a multispecies model that integrates substrate removal kinetics and soluble microbial products (SMP) production/consumption. This paper presents an integrated analysis of the activated sludge process based on chemical, molecular biology, and mathematical tools. The model was able to describe the MBR system with a high degree of accuracy, in terms of COD removal and nitrification, as well as sludge production and population dynamics through the ratio of active nitrifters/bacteria. Both steady-state and transient conditions could be described accurately by the model, except for technical problems or sudden variations in the wastewater composition.
ISSN:0273-1223
1996-9732
DOI:10.1016/S0273-1223(98)00111-5