Loading…

Fall Creek Monitoring Station: Highly Resolved Temporal Sampling to Prioritize the Identification of Nontarget Micropollutants in a Small Stream

The goal of this research was to comprehensively characterize the occurrence and temporal dynamics of target and nontarget micropollutants in a small stream. We established the Fall Creek Monitoring Station in March 2017 and collected daily composite samples for one year. We measured water samples b...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2019-01, Vol.53 (1), p.77-87
Main Authors: Carpenter, Corey M. G, Wong, Lok Yee J, Johnson, Catherine A, Helbling, Damian E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this research was to comprehensively characterize the occurrence and temporal dynamics of target and nontarget micropollutants in a small stream. We established the Fall Creek Monitoring Station in March 2017 and collected daily composite samples for one year. We measured water samples by means of high-resolution mass spectrometry and developed and optimized a postacquisition data processing workflow to screen for 162 target micropollutants and group all mass spectral (MS) features into temporal profiles. We used hierarchical clustering analysis to prioritize nontarget MS features based their similarity to target micropollutant profiles and developed a high-throughput pipeline to elucidate the structures of prioritized nontarget MS features. Our analyses resulted in the identification of 31 target micropollutants and 59 nontarget micropollutants with varying levels of confidence. Temporal profiles of the 90 identified micropollutants revealed unexpected concentration–discharge relationships that depended on the source of the micropollutant and hydrological features of the watershed. Several of the nontarget micropollutants have not been previously reported including pharmaceutical metabolites, rubber vulcanization accelerators, plasticizers, and flame retardants. Our data provide novel insights on the temporal dynamics of micropollutant occurrence in small streams. Further, our approach to nontarget analysis is general and not restricted to highly resolved temporal data acquisitions or samples collected from surface water systems.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.8b05320