Loading…
Modeling of TURBOFLO - A novel biofilm reactor for wastewater treatment
A mathematical model of a novel industrial-scale biofilm reactor - TURBOFLO - was developed. The reactor is an internal circulating airlift with rectangular cross-section. High density polyethylene granules with a density of less than 1 g/cm3 were used to support bacterial growth. The reactor was us...
Saved in:
Published in: | Water science and technology 1998-01, Vol.37 (4-5), p.177-181 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2753-91f2ad09feec0f7770c9dd70a37510c04af9aca9c9fea849876741251894a4763 |
---|---|
cites | |
container_end_page | 181 |
container_issue | 4-5 |
container_start_page | 177 |
container_title | Water science and technology |
container_volume | 37 |
creator | Mousseau, Fabien Liu, Sean X. Hermanowicz, Slawomir W. Lazarova, Valentina Manem, Jacques |
description | A mathematical model of a novel industrial-scale biofilm reactor - TURBOFLO - was developed. The reactor is an internal circulating airlift with rectangular cross-section. High density polyethylene granules with a density of less than 1 g/cm3 were used to support bacterial growth. The reactor was used for several months for nitrification of secondary effluent. The mathematical model consisted of three differential mass balance equations for ammonia, dissolved oxygen (DO) and biomass. Description of gas-liquid mass transfer was the critical part of the model. The most successful approach was based on Higbie's penetration theory and Kolmogorov's isotropic turbulence. |
doi_str_mv | 10.1016/S0273-1223(98)00101-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21390763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273122398001012</els_id><sourcerecordid>14498718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2753-91f2ad09feec0f7770c9dd70a37510c04af9aca9c9fea849876741251894a4763</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq6PjyAEBNFDdfJo05xExResLPg4h5hOJNJtNOkqfntbVzx42UMIDL8MM_kTssfgmAGrTh6AK1EwzsWhro8AhmLB18iEaV0VWgm-TiZ_ZJNs5fwKAEpImJDru9hgG7oXGj19fLo_n11NZ7SgZ7SLH9jS5xB9aOc0oXV9TNQP59PmHj9tj4n2Q72fY9fvkA1v24y7v_c2ebq6fLy4Kaaz69uLs2nhuCpFoZnntgHtER14pRQ43TQKrFAlAwfSem2d1W4Qtpa6VpWSjJes1tJKVYltcrDs-5bi-wJzb-YhO2xb22FcZMOZ0DC4lZBVpeQ18NVQjmOweoD7_-BrXKRu2NYwLYXgvKxGVS6VSzHnhN68pTC36cswMGNc5icuM2ZhdG1-4jLjGKfLdzj83kfAZLIL2DlsQkLXmyaGFR2-AebUmRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943322568</pqid></control><display><type>article</type><title>Modeling of TURBOFLO - A novel biofilm reactor for wastewater treatment</title><source>Alma/SFX Local Collection</source><creator>Mousseau, Fabien ; Liu, Sean X. ; Hermanowicz, Slawomir W. ; Lazarova, Valentina ; Manem, Jacques</creator><contributor>The Conference Program Committee</contributor><creatorcontrib>Mousseau, Fabien ; Liu, Sean X. ; Hermanowicz, Slawomir W. ; Lazarova, Valentina ; Manem, Jacques ; The Conference Program Committee</creatorcontrib><description>A mathematical model of a novel industrial-scale biofilm reactor - TURBOFLO - was developed. The reactor is an internal circulating airlift with rectangular cross-section. High density polyethylene granules with a density of less than 1 g/cm3 were used to support bacterial growth. The reactor was used for several months for nitrification of secondary effluent. The mathematical model consisted of three differential mass balance equations for ammonia, dissolved oxygen (DO) and biomass. Description of gas-liquid mass transfer was the critical part of the model. The most successful approach was based on Higbie's penetration theory and Kolmogorov's isotropic turbulence.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.1016/S0273-1223(98)00101-2</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Aerodynamics ; Airlift ; Ammonia ; Bacteria ; biofilm ; Biofilms ; Biological sewage treatment ; Bioreactors ; Differential equations ; Dissolved oxygen ; Fluidized beds ; High density polyethylenes ; Isotropic turbulence ; Mass transfer ; Mathematical analysis ; mathematical modeling ; Mathematical models ; Modelling ; Nitrification ; penetration theory ; Polyethylene ; Reactors ; Turbulence ; Wastewater ; Wastewater treatment</subject><ispartof>Water science and technology, 1998-01, Vol.37 (4-5), p.177-181</ispartof><rights>1998 International Association on Water Quality</rights><rights>Copyright IWA Publishing Feb 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2753-91f2ad09feec0f7770c9dd70a37510c04af9aca9c9fea849876741251894a4763</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>The Conference Program Committee</contributor><creatorcontrib>Mousseau, Fabien</creatorcontrib><creatorcontrib>Liu, Sean X.</creatorcontrib><creatorcontrib>Hermanowicz, Slawomir W.</creatorcontrib><creatorcontrib>Lazarova, Valentina</creatorcontrib><creatorcontrib>Manem, Jacques</creatorcontrib><title>Modeling of TURBOFLO - A novel biofilm reactor for wastewater treatment</title><title>Water science and technology</title><description>A mathematical model of a novel industrial-scale biofilm reactor - TURBOFLO - was developed. The reactor is an internal circulating airlift with rectangular cross-section. High density polyethylene granules with a density of less than 1 g/cm3 were used to support bacterial growth. The reactor was used for several months for nitrification of secondary effluent. The mathematical model consisted of three differential mass balance equations for ammonia, dissolved oxygen (DO) and biomass. Description of gas-liquid mass transfer was the critical part of the model. The most successful approach was based on Higbie's penetration theory and Kolmogorov's isotropic turbulence.</description><subject>Aerodynamics</subject><subject>Airlift</subject><subject>Ammonia</subject><subject>Bacteria</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biological sewage treatment</subject><subject>Bioreactors</subject><subject>Differential equations</subject><subject>Dissolved oxygen</subject><subject>Fluidized beds</subject><subject>High density polyethylenes</subject><subject>Isotropic turbulence</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nitrification</subject><subject>penetration theory</subject><subject>Polyethylene</subject><subject>Reactors</subject><subject>Turbulence</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgCq6PjyAEBNFDdfJo05xExResLPg4h5hOJNJtNOkqfntbVzx42UMIDL8MM_kTssfgmAGrTh6AK1EwzsWhro8AhmLB18iEaV0VWgm-TiZ_ZJNs5fwKAEpImJDru9hgG7oXGj19fLo_n11NZ7SgZ7SLH9jS5xB9aOc0oXV9TNQP59PmHj9tj4n2Q72fY9fvkA1v24y7v_c2ebq6fLy4Kaaz69uLs2nhuCpFoZnntgHtER14pRQ43TQKrFAlAwfSem2d1W4Qtpa6VpWSjJes1tJKVYltcrDs-5bi-wJzb-YhO2xb22FcZMOZ0DC4lZBVpeQ18NVQjmOweoD7_-BrXKRu2NYwLYXgvKxGVS6VSzHnhN68pTC36cswMGNc5icuM2ZhdG1-4jLjGKfLdzj83kfAZLIL2DlsQkLXmyaGFR2-AebUmRc</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Mousseau, Fabien</creator><creator>Liu, Sean X.</creator><creator>Hermanowicz, Slawomir W.</creator><creator>Lazarova, Valentina</creator><creator>Manem, Jacques</creator><general>Elsevier Ltd</general><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>19980101</creationdate><title>Modeling of TURBOFLO - A novel biofilm reactor for wastewater treatment</title><author>Mousseau, Fabien ; Liu, Sean X. ; Hermanowicz, Slawomir W. ; Lazarova, Valentina ; Manem, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2753-91f2ad09feec0f7770c9dd70a37510c04af9aca9c9fea849876741251894a4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Aerodynamics</topic><topic>Airlift</topic><topic>Ammonia</topic><topic>Bacteria</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biological sewage treatment</topic><topic>Bioreactors</topic><topic>Differential equations</topic><topic>Dissolved oxygen</topic><topic>Fluidized beds</topic><topic>High density polyethylenes</topic><topic>Isotropic turbulence</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nitrification</topic><topic>penetration theory</topic><topic>Polyethylene</topic><topic>Reactors</topic><topic>Turbulence</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousseau, Fabien</creatorcontrib><creatorcontrib>Liu, Sean X.</creatorcontrib><creatorcontrib>Hermanowicz, Slawomir W.</creatorcontrib><creatorcontrib>Lazarova, Valentina</creatorcontrib><creatorcontrib>Manem, Jacques</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousseau, Fabien</au><au>Liu, Sean X.</au><au>Hermanowicz, Slawomir W.</au><au>Lazarova, Valentina</au><au>Manem, Jacques</au><au>The Conference Program Committee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of TURBOFLO - A novel biofilm reactor for wastewater treatment</atitle><jtitle>Water science and technology</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>37</volume><issue>4-5</issue><spage>177</spage><epage>181</epage><pages>177-181</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>A mathematical model of a novel industrial-scale biofilm reactor - TURBOFLO - was developed. The reactor is an internal circulating airlift with rectangular cross-section. High density polyethylene granules with a density of less than 1 g/cm3 were used to support bacterial growth. The reactor was used for several months for nitrification of secondary effluent. The mathematical model consisted of three differential mass balance equations for ammonia, dissolved oxygen (DO) and biomass. Description of gas-liquid mass transfer was the critical part of the model. The most successful approach was based on Higbie's penetration theory and Kolmogorov's isotropic turbulence.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0273-1223(98)00101-2</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 1998-01, Vol.37 (4-5), p.177-181 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_21390763 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Airlift Ammonia Bacteria biofilm Biofilms Biological sewage treatment Bioreactors Differential equations Dissolved oxygen Fluidized beds High density polyethylenes Isotropic turbulence Mass transfer Mathematical analysis mathematical modeling Mathematical models Modelling Nitrification penetration theory Polyethylene Reactors Turbulence Wastewater Wastewater treatment |
title | Modeling of TURBOFLO - A novel biofilm reactor for wastewater treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20TURBOFLO%20-%20A%20novel%20biofilm%20reactor%20for%20wastewater%20treatment&rft.jtitle=Water%20science%20and%20technology&rft.au=Mousseau,%20Fabien&rft.date=1998-01-01&rft.volume=37&rft.issue=4-5&rft.spage=177&rft.epage=181&rft.pages=177-181&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.1016/S0273-1223(98)00101-2&rft_dat=%3Cproquest_cross%3E14498718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2753-91f2ad09feec0f7770c9dd70a37510c04af9aca9c9fea849876741251894a4763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943322568&rft_id=info:pmid/&rfr_iscdi=true |