Loading…
Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities
The “4 per mil” initiative recognizes the pivotal role of soil in carbon resequestration. The need for evidence to substantiate the influence of agricultural practices on chemical nature of soil carbon and microbial biodiversity has become a priority. However, owing to the molecular complexity of so...
Saved in:
Published in: | Environmental science & technology 2019-01, Vol.53 (1), p.50-59 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The “4 per mil” initiative recognizes the pivotal role of soil in carbon resequestration. The need for evidence to substantiate the influence of agricultural practices on chemical nature of soil carbon and microbial biodiversity has become a priority. However, owing to the molecular complexity of soil dissolved organic matter (DOM), specific linkages to microbial biodiversity have eluded researchers. Here, we characterized the chemodiversity of soil DOM, assessed the variation of soil bacterial community composition (BCC), and identified specific linkages between DOM traits and BCC. Sustained organic carbon amendment significantly (P < 0.05) increased total organic matter reservoirs, resulted in higher chemodiversity of DOM and emergence of recalcitrant moieties (H/C < 1.5). In the meantime, sustained organic carbon amendment shaped the BCC to a more eutrophic state while long-term chemical fertilization directed the BCC toward an oligotrophic state. Meanwhile, higher connectivity and complexity were observed in organic carbon amendment by DOM–BCC network analysis, indicating that soil microbes tended to have more interaction with DOM molecules after organic matter inputs. These results highlight the potential for organic carbon amendments to not only build soil carbon stocks and increase their resilience but also mediate the functional state of soil bacterial communities. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.8b04673 |