Loading…

Isolation of synaptic vesicles from genetically engineered cultured neurons

•A procedure to isolate of SVs from cultured neurons and limited neuronal samples.•SVs from culture exhibit neurotransmitter uptake comparable to SVs from brain tissue.•Visualization of a tagged synaptophysin demonstrates efficient SV modification.•SVs from genetically engineered neurons are accessi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2019-01, Vol.312, p.114-121
Main Authors: McKenzie, Catherine, Spanova, Miroslava, Johnson, Alexander, Kainrath, Stephanie, Zheden, Vanessa, Sitte, Harald H., Janovjak, Harald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023
cites cdi_FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023
container_end_page 121
container_issue
container_start_page 114
container_title Journal of neuroscience methods
container_volume 312
creator McKenzie, Catherine
Spanova, Miroslava
Johnson, Alexander
Kainrath, Stephanie
Zheden, Vanessa
Sitte, Harald H.
Janovjak, Harald
description •A procedure to isolate of SVs from cultured neurons and limited neuronal samples.•SVs from culture exhibit neurotransmitter uptake comparable to SVs from brain tissue.•Visualization of a tagged synaptophysin demonstrates efficient SV modification.•SVs from genetically engineered neurons are accessible without transgenic animals. Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.
doi_str_mv 10.1016/j.jneumeth.2018.11.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2141049104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027018303868</els_id><sourcerecordid>2141049104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoun78haVHL60zbTZtb4r4hYIXBW8hm07XlDZZk1bYf2-WXb16GN5heObrZWyOkCGguOqyztI00PiZ5YBVhphFOWAzrMo8FWX1cchmEVykkJdwwk5D6ACA1yCO2UkRE1EKnLHnp-B6NRpnE9cmYWPVejQ6-aZgdE8hab0bkhVZilXV95uE7MpYIk9Noqd-nLZJvMQ7G87ZUav6QBd7PWPv93dvt4_py-vD0-3NS6oLUY1poTksgBclh5pTUVeNqLkqqcpRaRSiEgSoYwHqfCGWulygQF5hWdSKA-TFGbvczV179zVRGOVggqa-V5bcFGSOHOODMSIqdqj2LgRPrVx7Myi_kQhya6Ts5K-RcmukRJRRYuN8v2NaDtT8tf06F4HrHUDx029DXgZtyGpqjCc9ysaZ_3b8AM1rhzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2141049104</pqid></control><display><type>article</type><title>Isolation of synaptic vesicles from genetically engineered cultured neurons</title><source>Elsevier</source><creator>McKenzie, Catherine ; Spanova, Miroslava ; Johnson, Alexander ; Kainrath, Stephanie ; Zheden, Vanessa ; Sitte, Harald H. ; Janovjak, Harald</creator><creatorcontrib>McKenzie, Catherine ; Spanova, Miroslava ; Johnson, Alexander ; Kainrath, Stephanie ; Zheden, Vanessa ; Sitte, Harald H. ; Janovjak, Harald</creatorcontrib><description>•A procedure to isolate of SVs from cultured neurons and limited neuronal samples.•SVs from culture exhibit neurotransmitter uptake comparable to SVs from brain tissue.•Visualization of a tagged synaptophysin demonstrates efficient SV modification.•SVs from genetically engineered neurons are accessible without transgenic animals. Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2018.11.018</identifier><identifier>PMID: 30496761</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Cell Fractionation - methods ; Cells, Cultured ; Genetic Engineering ; Glutamic Acid - metabolism ; Lentivirus - physiology ; Neuronal culture ; Neurons - metabolism ; Neurotransmitter uptake ; Rats, Wistar ; Release ; Synaptic vesicle ; Synaptic Vesicles - metabolism</subject><ispartof>Journal of neuroscience methods, 2019-01, Vol.312, p.114-121</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023</citedby><cites>FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023</cites><orcidid>0000-0002-8023-9315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30496761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKenzie, Catherine</creatorcontrib><creatorcontrib>Spanova, Miroslava</creatorcontrib><creatorcontrib>Johnson, Alexander</creatorcontrib><creatorcontrib>Kainrath, Stephanie</creatorcontrib><creatorcontrib>Zheden, Vanessa</creatorcontrib><creatorcontrib>Sitte, Harald H.</creatorcontrib><creatorcontrib>Janovjak, Harald</creatorcontrib><title>Isolation of synaptic vesicles from genetically engineered cultured neurons</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>•A procedure to isolate of SVs from cultured neurons and limited neuronal samples.•SVs from culture exhibit neurotransmitter uptake comparable to SVs from brain tissue.•Visualization of a tagged synaptophysin demonstrates efficient SV modification.•SVs from genetically engineered neurons are accessible without transgenic animals. Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.</description><subject>Animals</subject><subject>Cell Fractionation - methods</subject><subject>Cells, Cultured</subject><subject>Genetic Engineering</subject><subject>Glutamic Acid - metabolism</subject><subject>Lentivirus - physiology</subject><subject>Neuronal culture</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitter uptake</subject><subject>Rats, Wistar</subject><subject>Release</subject><subject>Synaptic vesicle</subject><subject>Synaptic Vesicles - metabolism</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoun78haVHL60zbTZtb4r4hYIXBW8hm07XlDZZk1bYf2-WXb16GN5heObrZWyOkCGguOqyztI00PiZ5YBVhphFOWAzrMo8FWX1cchmEVykkJdwwk5D6ACA1yCO2UkRE1EKnLHnp-B6NRpnE9cmYWPVejQ6-aZgdE8hab0bkhVZilXV95uE7MpYIk9Noqd-nLZJvMQ7G87ZUav6QBd7PWPv93dvt4_py-vD0-3NS6oLUY1poTksgBclh5pTUVeNqLkqqcpRaRSiEgSoYwHqfCGWulygQF5hWdSKA-TFGbvczV179zVRGOVggqa-V5bcFGSOHOODMSIqdqj2LgRPrVx7Myi_kQhya6Ts5K-RcmukRJRRYuN8v2NaDtT8tf06F4HrHUDx029DXgZtyGpqjCc9ysaZ_3b8AM1rhzs</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>McKenzie, Catherine</creator><creator>Spanova, Miroslava</creator><creator>Johnson, Alexander</creator><creator>Kainrath, Stephanie</creator><creator>Zheden, Vanessa</creator><creator>Sitte, Harald H.</creator><creator>Janovjak, Harald</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8023-9315</orcidid></search><sort><creationdate>20190115</creationdate><title>Isolation of synaptic vesicles from genetically engineered cultured neurons</title><author>McKenzie, Catherine ; Spanova, Miroslava ; Johnson, Alexander ; Kainrath, Stephanie ; Zheden, Vanessa ; Sitte, Harald H. ; Janovjak, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Fractionation - methods</topic><topic>Cells, Cultured</topic><topic>Genetic Engineering</topic><topic>Glutamic Acid - metabolism</topic><topic>Lentivirus - physiology</topic><topic>Neuronal culture</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitter uptake</topic><topic>Rats, Wistar</topic><topic>Release</topic><topic>Synaptic vesicle</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKenzie, Catherine</creatorcontrib><creatorcontrib>Spanova, Miroslava</creatorcontrib><creatorcontrib>Johnson, Alexander</creatorcontrib><creatorcontrib>Kainrath, Stephanie</creatorcontrib><creatorcontrib>Zheden, Vanessa</creatorcontrib><creatorcontrib>Sitte, Harald H.</creatorcontrib><creatorcontrib>Janovjak, Harald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKenzie, Catherine</au><au>Spanova, Miroslava</au><au>Johnson, Alexander</au><au>Kainrath, Stephanie</au><au>Zheden, Vanessa</au><au>Sitte, Harald H.</au><au>Janovjak, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation of synaptic vesicles from genetically engineered cultured neurons</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>312</volume><spage>114</spage><epage>121</epage><pages>114-121</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>•A procedure to isolate of SVs from cultured neurons and limited neuronal samples.•SVs from culture exhibit neurotransmitter uptake comparable to SVs from brain tissue.•Visualization of a tagged synaptophysin demonstrates efficient SV modification.•SVs from genetically engineered neurons are accessible without transgenic animals. Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30496761</pmid><doi>10.1016/j.jneumeth.2018.11.018</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8023-9315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2019-01, Vol.312, p.114-121
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_2141049104
source Elsevier
subjects Animals
Cell Fractionation - methods
Cells, Cultured
Genetic Engineering
Glutamic Acid - metabolism
Lentivirus - physiology
Neuronal culture
Neurons - metabolism
Neurotransmitter uptake
Rats, Wistar
Release
Synaptic vesicle
Synaptic Vesicles - metabolism
title Isolation of synaptic vesicles from genetically engineered cultured neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T12%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20of%20synaptic%20vesicles%20from%20genetically%20engineered%20cultured%20neurons&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=McKenzie,%20Catherine&rft.date=2019-01-15&rft.volume=312&rft.spage=114&rft.epage=121&rft.pages=114-121&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2018.11.018&rft_dat=%3Cproquest_cross%3E2141049104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3c40504374094e398d694a7e821ac16686e01ca7e09256bc75161481739a40023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2141049104&rft_id=info:pmid/30496761&rfr_iscdi=true