Loading…
Probabilistic modeling of single-trial fMRI data
Describes a probabilistic framework for modeling single-trial functional magnetic resonance (fMR) images based on a parametric model for the hemodynamic response and Markov random field (MRF) image models. The model is fitted to image data by maximizing a lower bound on the log likelihood. The resul...
Saved in:
Published in: | IEEE transactions on medical imaging 2000-01, Vol.19 (1), p.25-35 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Describes a probabilistic framework for modeling single-trial functional magnetic resonance (fMR) images based on a parametric model for the hemodynamic response and Markov random field (MRF) image models. The model is fitted to image data by maximizing a lower bound on the log likelihood. The result is an approximate maximum a posteriori estimate of the joint distribution over the model parameters and pixel labels. Examples show how this technique can used to segment two-dimensional (2-D) fMR images, or parts thereof, into regions with different characteristics of their hemodynamic response. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.832957 |