Loading…
Spectroscopic and imaging capabilities of a pixellated photon counting system
We are studying the performance of various thickness GaAs pixel detectors bump-bonded to a dedicated photon counting chip (PCC) for medical imaging applications in different energy ranges. In this work we present the experimental results obtained with a 600 μm thick pixel matrix (64×64 square pixels...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2001-06, Vol.466 (1), p.74-78 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We are studying the performance of various thickness GaAs pixel detectors bump-bonded to a dedicated photon counting chip (PCC) for medical imaging applications in different energy ranges. In this work we present the experimental results obtained with a 600
μm thick pixel matrix (64×64 square pixels, 170
μm side) in the 60–140
keV energy range to evaluate the possible use of such a system in the nuclear medicine field. In particular, we have measured the spectroscopic properties of the detector (charge collection efficiency, energy resolution and detection efficiency) and evaluated the discrimination capability of the electronics. Then we have measured the imaging properties of the whole system in terms of Point Spread Function and using a home made thyroid phantom. We present also a comparison with a traditional gamma camera and an evaluation, made by both experimental measurements and software simulations, of the imaging characteristics related to the use of a collimation system. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/S0168-9002(01)00827-0 |