Loading…

Low level laser therapy (LLLT) modulates ovarian function in mature female mice

It is known that LLLT has beneficial effects on several pathological conditions including wound healing, pain and inflammation. LLLT modulates biological processes, including cell proliferation, apoptosis and angiogenesis. In the present study, we examined the effect of local application of LLLT on...

Full description

Saved in:
Bibliographic Details
Published in:Progress in biophysics and molecular biology 2019-08, Vol.145, p.10-18
Main Authors: Oubiña, Gonzalo, Pascuali, Natalia, Scotti, Leopoldina, Di Pietro, Mariana, La Spina, Florenza A., Buffone, Mariano G., Higuera, Javier, Abramovich, Dalhia, Parborell, Fernanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is known that LLLT has beneficial effects on several pathological conditions including wound healing, pain and inflammation. LLLT modulates biological processes, including cell proliferation, apoptosis and angiogenesis. In the present study, we examined the effect of local application of LLLT on follicular dynamics, ovarian reserve, AMH expression, progesterone levels, apoptosis, angiogenesis, and reproductive outcome in adult mice. LLLT (200 J/cm2) increased the percentage of primary and preantral follicles, whilst decreasing the percentage of corpora lutea compared to control ovaries. LLLT-treated ovaries did not exhibit any changes regarding the number of primordial follicles. We observed a higher percentage of AMH-positive follicles (in early stages of development) in LLLT-treated ovaries compared to control ovaries. LLLT reduced the P4 concentration and the apoptosis in early antral follicles compared to control ones. LLLT caused a reduction in the endothelial cell area and an increase in the periendothelial cell area in the ovary. Additionally, LLLT was able to improve oocyte quality. Our findings suggest that local application of LLLT modulates follicular dynamics by regulating apoptosis and the vascular stability in mouse ovary. In conclusion, these data indicate that LLLT might become a novel and useful tool in the treatment of several pathologies, including female reproductive disorders.
ISSN:0079-6107
1873-1732
1873-1732
DOI:10.1016/j.pbiomolbio.2018.11.010