Loading…

Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method

This study was aimed at monitoring beach litter using an unmanned aerial vehicle (UAV) in the coastal city of Fuzhou, China. The data analysis shows that the optical images obtained by digital cameras on the UAV can help to identify and monitor beach litter using remote sensing and GIS technologies....

Full description

Saved in:
Bibliographic Details
Published in:Marine pollution bulletin 2018-12, Vol.137, p.388-398
Main Authors: Bao, Zhongcong, Sha, Jinming, Li, Xiaomei, Hanchiso, Terefe, Shifaw, Eshetu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433
cites cdi_FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433
container_end_page 398
container_issue
container_start_page 388
container_title Marine pollution bulletin
container_volume 137
creator Bao, Zhongcong
Sha, Jinming
Li, Xiaomei
Hanchiso, Terefe
Shifaw, Eshetu
description This study was aimed at monitoring beach litter using an unmanned aerial vehicle (UAV) in the coastal city of Fuzhou, China. The data analysis shows that the optical images obtained by digital cameras on the UAV can help to identify and monitor beach litter using remote sensing and GIS technologies. The threshold method can effectively segment the UAV image in the beach area. It is useful for quickly monitoring the distribution of beach litter in the area of interest, and hence it can help to provide effective technical support for the investigation and assessment of coastal beach litter. •Add knowledge to the literature on use of drones for beach litter monitoring.•Main considerations when selecting drones for aerial photography of beach litter.•Interpretation algorithm of the segmentation threshold method effectively segment the UAV image for monitoring beach litter.
doi_str_mv 10.1016/j.marpolbul.2018.08.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149034746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X18305708</els_id><sourcerecordid>2149034746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7uzoV9CAFy89Vnf-dPdxWdQVVrwoeAvpdPV0hnQyJumFvfnRzTDjHrwIBSHF772k6hHytoZdDbX8cNgtOh6DG1a3a6DudlAK-mdkU3dtXzEm2XOyAWhExRr584pcp3QAgLZp65fkioEAxnm3Ib-_Bm9ziNbvaZjogNrM1NmcMdLhkeo1h0Vna6j1pXWMmMst-BO7-kV7jyPVGK129AFnaxxSu-g9Jrqmk2eekSbcL-gvwjxHTHNwI10wz2F8RV5M2iV8fTm35Menj99v76r7b5-_3N7cV4ZLkauOd2BaZNizrm-QNRMTkneIEwrGB9EIMWjQ9SinAcXUdo0ZRxAoed_LljO2Je_PvscYfq2YslpsMuic9hjWpJqa92UnLZcFffcPeghr9OV3hZISOtEWxy1pz5SJIaWIkzrGMnp8VDWoU0jqoJ5CUqeQFJSCvijfXPzXYcHxSfc3lQLcnAEsC3mwGFUyFr3B0UY0WY3B_veRP523qc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166085774</pqid></control><display><type>article</type><title>Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bao, Zhongcong ; Sha, Jinming ; Li, Xiaomei ; Hanchiso, Terefe ; Shifaw, Eshetu</creator><creatorcontrib>Bao, Zhongcong ; Sha, Jinming ; Li, Xiaomei ; Hanchiso, Terefe ; Shifaw, Eshetu</creatorcontrib><description>This study was aimed at monitoring beach litter using an unmanned aerial vehicle (UAV) in the coastal city of Fuzhou, China. The data analysis shows that the optical images obtained by digital cameras on the UAV can help to identify and monitor beach litter using remote sensing and GIS technologies. The threshold method can effectively segment the UAV image in the beach area. It is useful for quickly monitoring the distribution of beach litter in the area of interest, and hence it can help to provide effective technical support for the investigation and assessment of coastal beach litter. •Add knowledge to the literature on use of drones for beach litter monitoring.•Main considerations when selecting drones for aerial photography of beach litter.•Interpretation algorithm of the segmentation threshold method effectively segment the UAV image for monitoring beach litter.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2018.08.009</identifier><identifier>PMID: 30503448</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aircraft ; Algorithms ; Bathing Beaches ; Beach litter ; Beaches ; Cameras ; China ; Coastal pollution ; Coasts ; Data Analysis ; Data processing ; Digital cameras ; Digital imaging ; Environmental monitoring ; Environmental Monitoring - instrumentation ; Environmental Monitoring - methods ; Environmental Pollution - analysis ; Geographic information systems ; Geographical information systems ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Litter ; Litters (births) ; Methods ; Photography - instrumentation ; Photography - methods ; Pollution ; Remote monitoring ; Remote sensing ; Remote Sensing Technology - instrumentation ; Remote Sensing Technology - methods ; Satellite navigation systems ; Technical services ; Threshold method ; UAV ; Unmanned aerial vehicles</subject><ispartof>Marine pollution bulletin, 2018-12, Vol.137, p.388-398</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433</citedby><cites>FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433</cites><orcidid>0000-0001-8200-5670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30503448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Zhongcong</creatorcontrib><creatorcontrib>Sha, Jinming</creatorcontrib><creatorcontrib>Li, Xiaomei</creatorcontrib><creatorcontrib>Hanchiso, Terefe</creatorcontrib><creatorcontrib>Shifaw, Eshetu</creatorcontrib><title>Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>This study was aimed at monitoring beach litter using an unmanned aerial vehicle (UAV) in the coastal city of Fuzhou, China. The data analysis shows that the optical images obtained by digital cameras on the UAV can help to identify and monitor beach litter using remote sensing and GIS technologies. The threshold method can effectively segment the UAV image in the beach area. It is useful for quickly monitoring the distribution of beach litter in the area of interest, and hence it can help to provide effective technical support for the investigation and assessment of coastal beach litter. •Add knowledge to the literature on use of drones for beach litter monitoring.•Main considerations when selecting drones for aerial photography of beach litter.•Interpretation algorithm of the segmentation threshold method effectively segment the UAV image for monitoring beach litter.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Bathing Beaches</subject><subject>Beach litter</subject><subject>Beaches</subject><subject>Cameras</subject><subject>China</subject><subject>Coastal pollution</subject><subject>Coasts</subject><subject>Data Analysis</subject><subject>Data processing</subject><subject>Digital cameras</subject><subject>Digital imaging</subject><subject>Environmental monitoring</subject><subject>Environmental Monitoring - instrumentation</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Pollution - analysis</subject><subject>Geographic information systems</subject><subject>Geographical information systems</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Litter</subject><subject>Litters (births)</subject><subject>Methods</subject><subject>Photography - instrumentation</subject><subject>Photography - methods</subject><subject>Pollution</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology - instrumentation</subject><subject>Remote Sensing Technology - methods</subject><subject>Satellite navigation systems</subject><subject>Technical services</subject><subject>Threshold method</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxYMo7uzoV9CAFy89Vnf-dPdxWdQVVrwoeAvpdPV0hnQyJumFvfnRzTDjHrwIBSHF772k6hHytoZdDbX8cNgtOh6DG1a3a6DudlAK-mdkU3dtXzEm2XOyAWhExRr584pcp3QAgLZp65fkioEAxnm3Ib-_Bm9ziNbvaZjogNrM1NmcMdLhkeo1h0Vna6j1pXWMmMst-BO7-kV7jyPVGK129AFnaxxSu-g9Jrqmk2eekSbcL-gvwjxHTHNwI10wz2F8RV5M2iV8fTm35Menj99v76r7b5-_3N7cV4ZLkauOd2BaZNizrm-QNRMTkneIEwrGB9EIMWjQ9SinAcXUdo0ZRxAoed_LljO2Je_PvscYfq2YslpsMuic9hjWpJqa92UnLZcFffcPeghr9OV3hZISOtEWxy1pz5SJIaWIkzrGMnp8VDWoU0jqoJ5CUqeQFJSCvijfXPzXYcHxSfc3lQLcnAEsC3mwGFUyFr3B0UY0WY3B_veRP523qc8</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Bao, Zhongcong</creator><creator>Sha, Jinming</creator><creator>Li, Xiaomei</creator><creator>Hanchiso, Terefe</creator><creator>Shifaw, Eshetu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8200-5670</orcidid></search><sort><creationdate>201812</creationdate><title>Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method</title><author>Bao, Zhongcong ; Sha, Jinming ; Li, Xiaomei ; Hanchiso, Terefe ; Shifaw, Eshetu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Bathing Beaches</topic><topic>Beach litter</topic><topic>Beaches</topic><topic>Cameras</topic><topic>China</topic><topic>Coastal pollution</topic><topic>Coasts</topic><topic>Data Analysis</topic><topic>Data processing</topic><topic>Digital cameras</topic><topic>Digital imaging</topic><topic>Environmental monitoring</topic><topic>Environmental Monitoring - instrumentation</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Pollution - analysis</topic><topic>Geographic information systems</topic><topic>Geographical information systems</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Litter</topic><topic>Litters (births)</topic><topic>Methods</topic><topic>Photography - instrumentation</topic><topic>Photography - methods</topic><topic>Pollution</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology - instrumentation</topic><topic>Remote Sensing Technology - methods</topic><topic>Satellite navigation systems</topic><topic>Technical services</topic><topic>Threshold method</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Zhongcong</creatorcontrib><creatorcontrib>Sha, Jinming</creatorcontrib><creatorcontrib>Li, Xiaomei</creatorcontrib><creatorcontrib>Hanchiso, Terefe</creatorcontrib><creatorcontrib>Shifaw, Eshetu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Zhongcong</au><au>Sha, Jinming</au><au>Li, Xiaomei</au><au>Hanchiso, Terefe</au><au>Shifaw, Eshetu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2018-12</date><risdate>2018</risdate><volume>137</volume><spage>388</spage><epage>398</epage><pages>388-398</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>This study was aimed at monitoring beach litter using an unmanned aerial vehicle (UAV) in the coastal city of Fuzhou, China. The data analysis shows that the optical images obtained by digital cameras on the UAV can help to identify and monitor beach litter using remote sensing and GIS technologies. The threshold method can effectively segment the UAV image in the beach area. It is useful for quickly monitoring the distribution of beach litter in the area of interest, and hence it can help to provide effective technical support for the investigation and assessment of coastal beach litter. •Add knowledge to the literature on use of drones for beach litter monitoring.•Main considerations when selecting drones for aerial photography of beach litter.•Interpretation algorithm of the segmentation threshold method effectively segment the UAV image for monitoring beach litter.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30503448</pmid><doi>10.1016/j.marpolbul.2018.08.009</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8200-5670</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2018-12, Vol.137, p.388-398
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_2149034746
source ScienceDirect Freedom Collection 2022-2024
subjects Aircraft
Algorithms
Bathing Beaches
Beach litter
Beaches
Cameras
China
Coastal pollution
Coasts
Data Analysis
Data processing
Digital cameras
Digital imaging
Environmental monitoring
Environmental Monitoring - instrumentation
Environmental Monitoring - methods
Environmental Pollution - analysis
Geographic information systems
Geographical information systems
Image processing
Image Processing, Computer-Assisted
Image segmentation
Litter
Litters (births)
Methods
Photography - instrumentation
Photography - methods
Pollution
Remote monitoring
Remote sensing
Remote Sensing Technology - instrumentation
Remote Sensing Technology - methods
Satellite navigation systems
Technical services
Threshold method
UAV
Unmanned aerial vehicles
title Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20beach%20litter%20by%20automatic%20interpretation%20of%20unmanned%20aerial%20vehicle%20images%20using%20the%20segmentation%20threshold%20method&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Bao,%20Zhongcong&rft.date=2018-12&rft.volume=137&rft.spage=388&rft.epage=398&rft.pages=388-398&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2018.08.009&rft_dat=%3Cproquest_cross%3E2149034746%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-8480c7e3e93892e32f35648eefe534b5255ba0a1d6fbe5f782cdd05e649967433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166085774&rft_id=info:pmid/30503448&rfr_iscdi=true