Loading…

Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy

Hybrid surgical simulators based on augmented reality (AR) solutions benefit from the advantages of both the box trainers and the virtual reality simulators. This paper reports on the results of a long development stage of a hybrid simulator for laparoscopic cholecystectomy that integrates real and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2019-07, Vol.66 (7), p.2091-2104
Main Authors: Viglialoro, Rosanna M., Esposito, Nicola, Condino, Sara, Cutolo, Fabrizio, Guadagni, Simone, Gesi, Marco, Ferrari, Mauro, Ferrari, Vincenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303
cites cdi_FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303
container_end_page 2104
container_issue 7
container_start_page 2091
container_title IEEE transactions on biomedical engineering
container_volume 66
creator Viglialoro, Rosanna M.
Esposito, Nicola
Condino, Sara
Cutolo, Fabrizio
Guadagni, Simone
Gesi, Marco
Ferrari, Mauro
Ferrari, Vincenzo
description Hybrid surgical simulators based on augmented reality (AR) solutions benefit from the advantages of both the box trainers and the virtual reality simulators. This paper reports on the results of a long development stage of a hybrid simulator for laparoscopic cholecystectomy that integrates real and the virtual components. We first outline the specifications of the AR simulator and then we explain the strategy adopted for implementing it based on a careful selection of its simulated anatomical components, and characterized by a real-time tracking of both a target anatomy and of the laparoscope. The former is tracked by means of an electromagnetic field generator, while the latter requires an additional camera for video tracking. The new system was evaluated in terms of AR visualization accuracy, realism, and hardware robustness. Obtained results show that the accuracy of AR visualization is adequate for training purposes. The qualitative evaluation confirms the robustness and the realism of the simulator. In conclusion, the proposed AR simulator satisfies all the initial specifications in terms of anatomical appearance, modularity, reusability, minimization of spare parts cost, and ability to record surgical errors and to track in real-time the Calot's triangle and the laparoscope. Thus, the proposed system could be an effective training tool for learning the task of identification and isolation of Calot's triangle in laparoscopic cholecystectomy. Moreover, the presented strategy could be applied to simulate other surgical procedures involving the task of identification and isolation of generic tubular structures, such as blood vessels, biliary tree, and nerves, which are not directly visible.
doi_str_mv 10.1109/TBME.2018.2883816
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149851475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8550677</ieee_id><sourcerecordid>2149851475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303</originalsourceid><addsrcrecordid>eNpdkcFq3DAQhkVpabZpH6AUiiCXXryRZMmSeks3aRPYUGi2ZyHL442CbW0lO8HP0Jeult3k0MMwDPP9PzP8CH2kZEkp0eebb7dXS0aoWjKlSkWrV2hBhVAFEyV9jRYkrwrNND9B71J6yCNXvHqLTkoiiOSaLNDfi2nbwzBCg3-B7fw44zHgm34XwyPguyluvbMdvvP91NnRh-ErXkNKYUi52zhk3SY82dgkPN4DvoTktwMOLbb4eq6jb_Da7mwMyYWdd88-IeI21-o-dODmNIIbQz-_R29a2yX4cOyn6Pf3q83qulj__HGzulgXjgs1FsCc1qwhtbMWiHIMOIO65Y2VXOpWVW3LqWOyUtZxRkTNKycJB2tZzWVJylP05eCbn_wzQRpN75ODrrMDhCkZRrlWgnIpMnr2H_oQpjjk6wxjXCpdaVJlih4olx9NEVqzi763cTaUmH1SZp-U2Sdljkllzeej81T30LwonqPJwKcD4AHgZa2EIJWU5T_TV5lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247896906</pqid></control><display><type>article</type><title>Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy</title><source>IEEE Xplore All Conference Series</source><creator>Viglialoro, Rosanna M. ; Esposito, Nicola ; Condino, Sara ; Cutolo, Fabrizio ; Guadagni, Simone ; Gesi, Marco ; Ferrari, Mauro ; Ferrari, Vincenzo</creator><creatorcontrib>Viglialoro, Rosanna M. ; Esposito, Nicola ; Condino, Sara ; Cutolo, Fabrizio ; Guadagni, Simone ; Gesi, Marco ; Ferrari, Mauro ; Ferrari, Vincenzo</creatorcontrib><description>Hybrid surgical simulators based on augmented reality (AR) solutions benefit from the advantages of both the box trainers and the virtual reality simulators. This paper reports on the results of a long development stage of a hybrid simulator for laparoscopic cholecystectomy that integrates real and the virtual components. We first outline the specifications of the AR simulator and then we explain the strategy adopted for implementing it based on a careful selection of its simulated anatomical components, and characterized by a real-time tracking of both a target anatomy and of the laparoscope. The former is tracked by means of an electromagnetic field generator, while the latter requires an additional camera for video tracking. The new system was evaluated in terms of AR visualization accuracy, realism, and hardware robustness. Obtained results show that the accuracy of AR visualization is adequate for training purposes. The qualitative evaluation confirms the robustness and the realism of the simulator. In conclusion, the proposed AR simulator satisfies all the initial specifications in terms of anatomical appearance, modularity, reusability, minimization of spare parts cost, and ability to record surgical errors and to track in real-time the Calot's triangle and the laparoscope. Thus, the proposed system could be an effective training tool for learning the task of identification and isolation of Calot's triangle in laparoscopic cholecystectomy. Moreover, the presented strategy could be applied to simulate other surgical procedures involving the task of identification and isolation of generic tubular structures, such as blood vessels, biliary tree, and nerves, which are not directly visible.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2018.2883816</identifier><identifier>PMID: 30507490</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Augmented reality ; Blood vessels ; Cholecystectomy ; cholecystectomy training ; Computer applications ; Electromagnetic fields ; hybrid simulators ; Initial specifications ; Laparoscopes ; laparoscopic simulation ; Laparoscopy ; Minimally invasive surgery ; Modularity ; Nerves ; physical anatomical model ; Real time ; Realism ; Robustness ; Simulation ; Simulators ; Solid modeling ; Spare parts ; Specifications ; Surgical simulator ; Task analysis ; Tracking ; Training ; Virtual reality ; Visualization</subject><ispartof>IEEE transactions on biomedical engineering, 2019-07, Vol.66 (7), p.2091-2104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303</citedby><cites>FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303</cites><orcidid>0000-0001-9294-2828 ; 0000-0001-6773-3741 ; 0000-0003-0972-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8550677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8550677$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30507490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viglialoro, Rosanna M.</creatorcontrib><creatorcontrib>Esposito, Nicola</creatorcontrib><creatorcontrib>Condino, Sara</creatorcontrib><creatorcontrib>Cutolo, Fabrizio</creatorcontrib><creatorcontrib>Guadagni, Simone</creatorcontrib><creatorcontrib>Gesi, Marco</creatorcontrib><creatorcontrib>Ferrari, Mauro</creatorcontrib><creatorcontrib>Ferrari, Vincenzo</creatorcontrib><title>Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Hybrid surgical simulators based on augmented reality (AR) solutions benefit from the advantages of both the box trainers and the virtual reality simulators. This paper reports on the results of a long development stage of a hybrid simulator for laparoscopic cholecystectomy that integrates real and the virtual components. We first outline the specifications of the AR simulator and then we explain the strategy adopted for implementing it based on a careful selection of its simulated anatomical components, and characterized by a real-time tracking of both a target anatomy and of the laparoscope. The former is tracked by means of an electromagnetic field generator, while the latter requires an additional camera for video tracking. The new system was evaluated in terms of AR visualization accuracy, realism, and hardware robustness. Obtained results show that the accuracy of AR visualization is adequate for training purposes. The qualitative evaluation confirms the robustness and the realism of the simulator. In conclusion, the proposed AR simulator satisfies all the initial specifications in terms of anatomical appearance, modularity, reusability, minimization of spare parts cost, and ability to record surgical errors and to track in real-time the Calot's triangle and the laparoscope. Thus, the proposed system could be an effective training tool for learning the task of identification and isolation of Calot's triangle in laparoscopic cholecystectomy. Moreover, the presented strategy could be applied to simulate other surgical procedures involving the task of identification and isolation of generic tubular structures, such as blood vessels, biliary tree, and nerves, which are not directly visible.</description><subject>Augmented reality</subject><subject>Blood vessels</subject><subject>Cholecystectomy</subject><subject>cholecystectomy training</subject><subject>Computer applications</subject><subject>Electromagnetic fields</subject><subject>hybrid simulators</subject><subject>Initial specifications</subject><subject>Laparoscopes</subject><subject>laparoscopic simulation</subject><subject>Laparoscopy</subject><subject>Minimally invasive surgery</subject><subject>Modularity</subject><subject>Nerves</subject><subject>physical anatomical model</subject><subject>Real time</subject><subject>Realism</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Solid modeling</subject><subject>Spare parts</subject><subject>Specifications</subject><subject>Surgical simulator</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>Training</subject><subject>Virtual reality</subject><subject>Visualization</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkcFq3DAQhkVpabZpH6AUiiCXXryRZMmSeks3aRPYUGi2ZyHL442CbW0lO8HP0Jeult3k0MMwDPP9PzP8CH2kZEkp0eebb7dXS0aoWjKlSkWrV2hBhVAFEyV9jRYkrwrNND9B71J6yCNXvHqLTkoiiOSaLNDfi2nbwzBCg3-B7fw44zHgm34XwyPguyluvbMdvvP91NnRh-ErXkNKYUi52zhk3SY82dgkPN4DvoTktwMOLbb4eq6jb_Da7mwMyYWdd88-IeI21-o-dODmNIIbQz-_R29a2yX4cOyn6Pf3q83qulj__HGzulgXjgs1FsCc1qwhtbMWiHIMOIO65Y2VXOpWVW3LqWOyUtZxRkTNKycJB2tZzWVJylP05eCbn_wzQRpN75ODrrMDhCkZRrlWgnIpMnr2H_oQpjjk6wxjXCpdaVJlih4olx9NEVqzi763cTaUmH1SZp-U2Sdljkllzeej81T30LwonqPJwKcD4AHgZa2EIJWU5T_TV5lw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Viglialoro, Rosanna M.</creator><creator>Esposito, Nicola</creator><creator>Condino, Sara</creator><creator>Cutolo, Fabrizio</creator><creator>Guadagni, Simone</creator><creator>Gesi, Marco</creator><creator>Ferrari, Mauro</creator><creator>Ferrari, Vincenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9294-2828</orcidid><orcidid>https://orcid.org/0000-0001-6773-3741</orcidid><orcidid>https://orcid.org/0000-0003-0972-3646</orcidid></search><sort><creationdate>20190701</creationdate><title>Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy</title><author>Viglialoro, Rosanna M. ; Esposito, Nicola ; Condino, Sara ; Cutolo, Fabrizio ; Guadagni, Simone ; Gesi, Marco ; Ferrari, Mauro ; Ferrari, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Augmented reality</topic><topic>Blood vessels</topic><topic>Cholecystectomy</topic><topic>cholecystectomy training</topic><topic>Computer applications</topic><topic>Electromagnetic fields</topic><topic>hybrid simulators</topic><topic>Initial specifications</topic><topic>Laparoscopes</topic><topic>laparoscopic simulation</topic><topic>Laparoscopy</topic><topic>Minimally invasive surgery</topic><topic>Modularity</topic><topic>Nerves</topic><topic>physical anatomical model</topic><topic>Real time</topic><topic>Realism</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Solid modeling</topic><topic>Spare parts</topic><topic>Specifications</topic><topic>Surgical simulator</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>Training</topic><topic>Virtual reality</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viglialoro, Rosanna M.</creatorcontrib><creatorcontrib>Esposito, Nicola</creatorcontrib><creatorcontrib>Condino, Sara</creatorcontrib><creatorcontrib>Cutolo, Fabrizio</creatorcontrib><creatorcontrib>Guadagni, Simone</creatorcontrib><creatorcontrib>Gesi, Marco</creatorcontrib><creatorcontrib>Ferrari, Mauro</creatorcontrib><creatorcontrib>Ferrari, Vincenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Viglialoro, Rosanna M.</au><au>Esposito, Nicola</au><au>Condino, Sara</au><au>Cutolo, Fabrizio</au><au>Guadagni, Simone</au><au>Gesi, Marco</au><au>Ferrari, Mauro</au><au>Ferrari, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>66</volume><issue>7</issue><spage>2091</spage><epage>2104</epage><pages>2091-2104</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Hybrid surgical simulators based on augmented reality (AR) solutions benefit from the advantages of both the box trainers and the virtual reality simulators. This paper reports on the results of a long development stage of a hybrid simulator for laparoscopic cholecystectomy that integrates real and the virtual components. We first outline the specifications of the AR simulator and then we explain the strategy adopted for implementing it based on a careful selection of its simulated anatomical components, and characterized by a real-time tracking of both a target anatomy and of the laparoscope. The former is tracked by means of an electromagnetic field generator, while the latter requires an additional camera for video tracking. The new system was evaluated in terms of AR visualization accuracy, realism, and hardware robustness. Obtained results show that the accuracy of AR visualization is adequate for training purposes. The qualitative evaluation confirms the robustness and the realism of the simulator. In conclusion, the proposed AR simulator satisfies all the initial specifications in terms of anatomical appearance, modularity, reusability, minimization of spare parts cost, and ability to record surgical errors and to track in real-time the Calot's triangle and the laparoscope. Thus, the proposed system could be an effective training tool for learning the task of identification and isolation of Calot's triangle in laparoscopic cholecystectomy. Moreover, the presented strategy could be applied to simulate other surgical procedures involving the task of identification and isolation of generic tubular structures, such as blood vessels, biliary tree, and nerves, which are not directly visible.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30507490</pmid><doi>10.1109/TBME.2018.2883816</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9294-2828</orcidid><orcidid>https://orcid.org/0000-0001-6773-3741</orcidid><orcidid>https://orcid.org/0000-0003-0972-3646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2019-07, Vol.66 (7), p.2091-2104
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_2149851475
source IEEE Xplore All Conference Series
subjects Augmented reality
Blood vessels
Cholecystectomy
cholecystectomy training
Computer applications
Electromagnetic fields
hybrid simulators
Initial specifications
Laparoscopes
laparoscopic simulation
Laparoscopy
Minimally invasive surgery
Modularity
Nerves
physical anatomical model
Real time
Realism
Robustness
Simulation
Simulators
Solid modeling
Spare parts
Specifications
Surgical simulator
Task analysis
Tracking
Training
Virtual reality
Visualization
title Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Reality%20to%20Improve%20Surgical%20Simulation:%20Lessons%20Learned%20Towards%20the%20Design%20of%20a%20Hybrid%20Laparoscopic%20Simulator%20for%20Cholecystectomy&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Viglialoro,%20Rosanna%20M.&rft.date=2019-07-01&rft.volume=66&rft.issue=7&rft.spage=2091&rft.epage=2104&rft.pages=2091-2104&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2018.2883816&rft_dat=%3Cproquest_CHZPO%3E2149851475%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-e2c992d0bcaae08c2e42ebf4da7479f86ff41c2768ac4205b46c704eaa2b47303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2247896906&rft_id=info:pmid/30507490&rft_ieee_id=8550677&rfr_iscdi=true