Loading…

Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration

Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2019-08, Vol.107 (6), p.1937-1944
Main Authors: Heo, Seong‐Yeong, Ko, Seok‐Chun, Oh, Gun‐Woo, Kim, Namwon, Choi, Il‐Whan, Park, Won Sun, Jung, Won‐Kyo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93
cites cdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93
container_end_page 1944
container_issue 6
container_start_page 1937
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 107
creator Heo, Seong‐Yeong
Ko, Seok‐Chun
Oh, Gun‐Woo
Kim, Namwon
Choi, Il‐Whan
Park, Won Sun
Jung, Won‐Kyo
description Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.
doi_str_mv 10.1002/jbm.b.34286
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149859096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149859096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</originalsourceid><addsrcrecordid>eNp9kbtOHDEUhi0UxL2ijyzRREK769t4xiUQCCAimqS2bM9xdlaz4409o2QpEI_AM_IkMTuEIkUqH_l8_nR8foSOKZlSQthsYZdTO-WCVXIL7dGiYBOhKvrhvS75LtpPaZFhSQq-g3Y5KUjFKd1Dj1fGxsaZvgkdNl2N3dxE43qIzcN4GTzu54D555en51Vsuh5qvArt2plVDG1GQwcz36Q5trnC8Lt_fY-TM96Htk7Yhzi2-ialAXCEH9BB3NgP0bY3bYKjt_MAfb-6_HZxPbm7_3JzcXY3cYJxOSmAVEx5WhnlvWVVSZiQ3CpZelIRb0XJylpxyZjI35XW5p4RtWDEOFtbxQ_Qp9GbZ_45QOr1skkO2tZ0EIakGc0rKxRRMqMn_6CLMMQuT6cZK6iSQnGRqdORcjGkFMHrvJuliWtNiX6NRedYtNWbWDL98c052CXU7-zfHDLARuBX08L6fy59e_71fLT-AfV1mlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964934</pqid></control><display><type>article</type><title>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Heo, Seong‐Yeong ; Ko, Seok‐Chun ; Oh, Gun‐Woo ; Kim, Namwon ; Choi, Il‐Whan ; Park, Won Sun ; Jung, Won‐Kyo</creator><creatorcontrib>Heo, Seong‐Yeong ; Ko, Seok‐Chun ; Oh, Gun‐Woo ; Kim, Namwon ; Choi, Il‐Whan ; Park, Won Sun ; Jung, Won‐Kyo</creatorcontrib><description>Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34286</identifier><identifier>PMID: 30508311</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3D print ; Alkaline phosphatase ; Animal tissues ; Biocompatibility ; Biomedical materials ; Bone growth ; bone tissue regeneration ; Bones ; Calcium ; Cell growth ; Cell proliferation ; Fabrication ; fish bone extract ; Materials research ; Materials science ; Mechanical properties ; Modulus of elasticity ; Osteoblasts ; Osteocalcin ; Osteopontin ; Phenotypes ; Physical characteristics ; Physical properties ; Polycaprolactone ; Pore size ; Porosity ; Regeneration ; Scaffolds ; Tensile properties ; Three dimensional printing ; Tissue engineering</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2019-08, Vol.107 (6), p.1937-1944</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</citedby><cites>FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30508311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Seong‐Yeong</creatorcontrib><creatorcontrib>Ko, Seok‐Chun</creatorcontrib><creatorcontrib>Oh, Gun‐Woo</creatorcontrib><creatorcontrib>Kim, Namwon</creatorcontrib><creatorcontrib>Choi, Il‐Whan</creatorcontrib><creatorcontrib>Park, Won Sun</creatorcontrib><creatorcontrib>Jung, Won‐Kyo</creatorcontrib><title>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.</description><subject>3D print</subject><subject>Alkaline phosphatase</subject><subject>Animal tissues</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>bone tissue regeneration</subject><subject>Bones</subject><subject>Calcium</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Fabrication</subject><subject>fish bone extract</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Osteoblasts</subject><subject>Osteocalcin</subject><subject>Osteopontin</subject><subject>Phenotypes</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Polycaprolactone</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Tensile properties</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kbtOHDEUhi0UxL2ijyzRREK769t4xiUQCCAimqS2bM9xdlaz4409o2QpEI_AM_IkMTuEIkUqH_l8_nR8foSOKZlSQthsYZdTO-WCVXIL7dGiYBOhKvrhvS75LtpPaZFhSQq-g3Y5KUjFKd1Dj1fGxsaZvgkdNl2N3dxE43qIzcN4GTzu54D555en51Vsuh5qvArt2plVDG1GQwcz36Q5trnC8Lt_fY-TM96Htk7Yhzi2-ialAXCEH9BB3NgP0bY3bYKjt_MAfb-6_HZxPbm7_3JzcXY3cYJxOSmAVEx5WhnlvWVVSZiQ3CpZelIRb0XJylpxyZjI35XW5p4RtWDEOFtbxQ_Qp9GbZ_45QOr1skkO2tZ0EIakGc0rKxRRMqMn_6CLMMQuT6cZK6iSQnGRqdORcjGkFMHrvJuliWtNiX6NRedYtNWbWDL98c052CXU7-zfHDLARuBX08L6fy59e_71fLT-AfV1mlY</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Heo, Seong‐Yeong</creator><creator>Ko, Seok‐Chun</creator><creator>Oh, Gun‐Woo</creator><creator>Kim, Namwon</creator><creator>Choi, Il‐Whan</creator><creator>Park, Won Sun</creator><creator>Jung, Won‐Kyo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201908</creationdate><title>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</title><author>Heo, Seong‐Yeong ; Ko, Seok‐Chun ; Oh, Gun‐Woo ; Kim, Namwon ; Choi, Il‐Whan ; Park, Won Sun ; Jung, Won‐Kyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D print</topic><topic>Alkaline phosphatase</topic><topic>Animal tissues</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>bone tissue regeneration</topic><topic>Bones</topic><topic>Calcium</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Fabrication</topic><topic>fish bone extract</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Osteoblasts</topic><topic>Osteocalcin</topic><topic>Osteopontin</topic><topic>Phenotypes</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Polycaprolactone</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Tensile properties</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Seong‐Yeong</creatorcontrib><creatorcontrib>Ko, Seok‐Chun</creatorcontrib><creatorcontrib>Oh, Gun‐Woo</creatorcontrib><creatorcontrib>Kim, Namwon</creatorcontrib><creatorcontrib>Choi, Il‐Whan</creatorcontrib><creatorcontrib>Park, Won Sun</creatorcontrib><creatorcontrib>Jung, Won‐Kyo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Seong‐Yeong</au><au>Ko, Seok‐Chun</au><au>Oh, Gun‐Woo</au><au>Kim, Namwon</au><au>Choi, Il‐Whan</au><au>Park, Won Sun</au><au>Jung, Won‐Kyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2019-08</date><risdate>2019</risdate><volume>107</volume><issue>6</issue><spage>1937</spage><epage>1944</epage><pages>1937-1944</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30508311</pmid><doi>10.1002/jbm.b.34286</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2019-08, Vol.107 (6), p.1937-1944
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2149859096
source Wiley-Blackwell Read & Publish Collection
subjects 3D print
Alkaline phosphatase
Animal tissues
Biocompatibility
Biomedical materials
Bone growth
bone tissue regeneration
Bones
Calcium
Cell growth
Cell proliferation
Fabrication
fish bone extract
Materials research
Materials science
Mechanical properties
Modulus of elasticity
Osteoblasts
Osteocalcin
Osteopontin
Phenotypes
Physical characteristics
Physical properties
Polycaprolactone
Pore size
Porosity
Regeneration
Scaffolds
Tensile properties
Three dimensional printing
Tissue engineering
title Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20the%203D%E2%80%90printed%20polycaprolactone/fish%20bone%20extract%20scaffolds%20for%20bone%20tissue%20regeneration&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Heo,%20Seong%E2%80%90Yeong&rft.date=2019-08&rft.volume=107&rft.issue=6&rft.spage=1937&rft.epage=1944&rft.pages=1937-1944&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34286&rft_dat=%3Cproquest_cross%3E2149859096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251964934&rft_id=info:pmid/30508311&rfr_iscdi=true