Loading…
Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration
Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) in...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2019-08, Vol.107 (6), p.1937-1944 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93 |
container_end_page | 1944 |
container_issue | 6 |
container_start_page | 1937 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 107 |
creator | Heo, Seong‐Yeong Ko, Seok‐Chun Oh, Gun‐Woo Kim, Namwon Choi, Il‐Whan Park, Won Sun Jung, Won‐Kyo |
description | Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019. |
doi_str_mv | 10.1002/jbm.b.34286 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2149859096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149859096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</originalsourceid><addsrcrecordid>eNp9kbtOHDEUhi0UxL2ijyzRREK769t4xiUQCCAimqS2bM9xdlaz4409o2QpEI_AM_IkMTuEIkUqH_l8_nR8foSOKZlSQthsYZdTO-WCVXIL7dGiYBOhKvrhvS75LtpPaZFhSQq-g3Y5KUjFKd1Dj1fGxsaZvgkdNl2N3dxE43qIzcN4GTzu54D555en51Vsuh5qvArt2plVDG1GQwcz36Q5trnC8Lt_fY-TM96Htk7Yhzi2-ialAXCEH9BB3NgP0bY3bYKjt_MAfb-6_HZxPbm7_3JzcXY3cYJxOSmAVEx5WhnlvWVVSZiQ3CpZelIRb0XJylpxyZjI35XW5p4RtWDEOFtbxQ_Qp9GbZ_45QOr1skkO2tZ0EIakGc0rKxRRMqMn_6CLMMQuT6cZK6iSQnGRqdORcjGkFMHrvJuliWtNiX6NRedYtNWbWDL98c052CXU7-zfHDLARuBX08L6fy59e_71fLT-AfV1mlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964934</pqid></control><display><type>article</type><title>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Heo, Seong‐Yeong ; Ko, Seok‐Chun ; Oh, Gun‐Woo ; Kim, Namwon ; Choi, Il‐Whan ; Park, Won Sun ; Jung, Won‐Kyo</creator><creatorcontrib>Heo, Seong‐Yeong ; Ko, Seok‐Chun ; Oh, Gun‐Woo ; Kim, Namwon ; Choi, Il‐Whan ; Park, Won Sun ; Jung, Won‐Kyo</creatorcontrib><description>Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34286</identifier><identifier>PMID: 30508311</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3D print ; Alkaline phosphatase ; Animal tissues ; Biocompatibility ; Biomedical materials ; Bone growth ; bone tissue regeneration ; Bones ; Calcium ; Cell growth ; Cell proliferation ; Fabrication ; fish bone extract ; Materials research ; Materials science ; Mechanical properties ; Modulus of elasticity ; Osteoblasts ; Osteocalcin ; Osteopontin ; Phenotypes ; Physical characteristics ; Physical properties ; Polycaprolactone ; Pore size ; Porosity ; Regeneration ; Scaffolds ; Tensile properties ; Three dimensional printing ; Tissue engineering</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2019-08, Vol.107 (6), p.1937-1944</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</citedby><cites>FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30508311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Seong‐Yeong</creatorcontrib><creatorcontrib>Ko, Seok‐Chun</creatorcontrib><creatorcontrib>Oh, Gun‐Woo</creatorcontrib><creatorcontrib>Kim, Namwon</creatorcontrib><creatorcontrib>Choi, Il‐Whan</creatorcontrib><creatorcontrib>Park, Won Sun</creatorcontrib><creatorcontrib>Jung, Won‐Kyo</creatorcontrib><title>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.</description><subject>3D print</subject><subject>Alkaline phosphatase</subject><subject>Animal tissues</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>bone tissue regeneration</subject><subject>Bones</subject><subject>Calcium</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Fabrication</subject><subject>fish bone extract</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Osteoblasts</subject><subject>Osteocalcin</subject><subject>Osteopontin</subject><subject>Phenotypes</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Polycaprolactone</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Tensile properties</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kbtOHDEUhi0UxL2ijyzRREK769t4xiUQCCAimqS2bM9xdlaz4409o2QpEI_AM_IkMTuEIkUqH_l8_nR8foSOKZlSQthsYZdTO-WCVXIL7dGiYBOhKvrhvS75LtpPaZFhSQq-g3Y5KUjFKd1Dj1fGxsaZvgkdNl2N3dxE43qIzcN4GTzu54D555en51Vsuh5qvArt2plVDG1GQwcz36Q5trnC8Lt_fY-TM96Htk7Yhzi2-ialAXCEH9BB3NgP0bY3bYKjt_MAfb-6_HZxPbm7_3JzcXY3cYJxOSmAVEx5WhnlvWVVSZiQ3CpZelIRb0XJylpxyZjI35XW5p4RtWDEOFtbxQ_Qp9GbZ_45QOr1skkO2tZ0EIakGc0rKxRRMqMn_6CLMMQuT6cZK6iSQnGRqdORcjGkFMHrvJuliWtNiX6NRedYtNWbWDL98c052CXU7-zfHDLARuBX08L6fy59e_71fLT-AfV1mlY</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Heo, Seong‐Yeong</creator><creator>Ko, Seok‐Chun</creator><creator>Oh, Gun‐Woo</creator><creator>Kim, Namwon</creator><creator>Choi, Il‐Whan</creator><creator>Park, Won Sun</creator><creator>Jung, Won‐Kyo</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201908</creationdate><title>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</title><author>Heo, Seong‐Yeong ; Ko, Seok‐Chun ; Oh, Gun‐Woo ; Kim, Namwon ; Choi, Il‐Whan ; Park, Won Sun ; Jung, Won‐Kyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D print</topic><topic>Alkaline phosphatase</topic><topic>Animal tissues</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>bone tissue regeneration</topic><topic>Bones</topic><topic>Calcium</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Fabrication</topic><topic>fish bone extract</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Osteoblasts</topic><topic>Osteocalcin</topic><topic>Osteopontin</topic><topic>Phenotypes</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Polycaprolactone</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Tensile properties</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Seong‐Yeong</creatorcontrib><creatorcontrib>Ko, Seok‐Chun</creatorcontrib><creatorcontrib>Oh, Gun‐Woo</creatorcontrib><creatorcontrib>Kim, Namwon</creatorcontrib><creatorcontrib>Choi, Il‐Whan</creatorcontrib><creatorcontrib>Park, Won Sun</creatorcontrib><creatorcontrib>Jung, Won‐Kyo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Seong‐Yeong</au><au>Ko, Seok‐Chun</au><au>Oh, Gun‐Woo</au><au>Kim, Namwon</au><au>Choi, Il‐Whan</au><au>Park, Won Sun</au><au>Jung, Won‐Kyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2019-08</date><risdate>2019</risdate><volume>107</volume><issue>6</issue><spage>1937</spage><epage>1944</epage><pages>1937-1944</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Fish bone extract (FBE) containing a trioligopeptide (FBP‐KSA, Lys‐Ser‐Ala) isolated from Johnius belengerii could induce osteogenic activities on MC3T3‐E1 pre‐osteoblasts in our previous study. Regarding the osteogenic effect of FBE, in the present study, we fabricated the three‐dimensional (3D) interconnected polycaprolactone (PCL)/FBE scaffolds for bone tissue regeneration. After fabrication of PCL scaffolds using 3D printing, FBE was coated on the surface of PCL scaffolds by self‐assembly process. In the physical characteristic and mechanical property tests, the results demonstrated that the fabricated scaffolds have the strut diameter (between 340 and 345 μm), pore size (between 470 and 480 μm), porosity (between 50% and 55%), and tensile properties (Young's modulus: 9.18–9.42 MPa; max tensile strengths 82.3–87.4 MPa) were similar to those of PCL scaffold. In the cell proliferation and osteogenic assay, the results showed that PCL/FBE scaffolds could significantly induce cell proliferation, calcium deposition, and the expression of osteogenic phenotype markers such as alkaline phosphatase, osteopontin, osteocalcin, and bone morphogenetic protein‐2 in the osteoblasts. These results suggest that FBE‐coated PCL scaffolds are promising materials for use in biomedical application to promote bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1937–1944, 2019.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30508311</pmid><doi>10.1002/jbm.b.34286</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2019-08, Vol.107 (6), p.1937-1944 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2149859096 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D print Alkaline phosphatase Animal tissues Biocompatibility Biomedical materials Bone growth bone tissue regeneration Bones Calcium Cell growth Cell proliferation Fabrication fish bone extract Materials research Materials science Mechanical properties Modulus of elasticity Osteoblasts Osteocalcin Osteopontin Phenotypes Physical characteristics Physical properties Polycaprolactone Pore size Porosity Regeneration Scaffolds Tensile properties Three dimensional printing Tissue engineering |
title | Fabrication and characterization of the 3D‐printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20the%203D%E2%80%90printed%20polycaprolactone/fish%20bone%20extract%20scaffolds%20for%20bone%20tissue%20regeneration&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Heo,%20Seong%E2%80%90Yeong&rft.date=2019-08&rft.volume=107&rft.issue=6&rft.spage=1937&rft.epage=1944&rft.pages=1937-1944&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34286&rft_dat=%3Cproquest_cross%3E2149859096%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4236-5e0829f18a9ffb28702463b967f080fb4727d9362244976bb3b9a4d420acbdb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251964934&rft_id=info:pmid/30508311&rfr_iscdi=true |