Loading…
Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor
The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recent...
Saved in:
Published in: | Applied and Environmental Microbiology 2008-05, Vol.74 (9), p.2573-2582 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3 |
container_end_page | 2582 |
container_issue | 9 |
container_start_page | 2573 |
container_title | Applied and Environmental Microbiology |
container_volume | 74 |
creator | Arabolaza, Ana Rodriguez, Eduardo Altabe, Silvia Alvarez, Hector Gramajo, Hugo |
description | The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism. |
doi_str_mv | 10.1128/AEM.02638-07 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_21508652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1472594461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</originalsourceid><addsrcrecordid>eNpd0Utv1DAUBWALgehQ2LGGgAQrUq7tOLE3SKUqD6kjkNqurRvHmXHlxIOdUOXf4zKj8pAseXE_HV_rEPKcwgmlTL4_PV-fAKu5LKF5QFYUlCwF5_VDsgJQqmSsgiPyJKUbAKiglo_JEZWcQkXZiqzXs5_cztviO07bW1xS0YdYXEWHZvEbvxgbgy8-upCWcdra5FLhxuJyinY3hSGPU2GC9c4EH-JT8qhHn-yzw31Mrj-dX519KS--ff56dnpRGsFgKjtFGW1AgqpBYdt1Cm3FTNuamvKulsgA2kbQ3jSCM9ra1lKOPTS9MaY3LT8mH_a5u7kdbGfsOEX0ehfdgHHRAZ3-dzK6rd6En5pxVSkQOeDtISCGH7NNkx5cMtZ7HG2Yk2ZUgKwFy_D1f_AmzHHMn9MMhGpELeuM3u2RiSGlaPv7TSjou5J0Lkn_LklDk_mLv7f_gw-tZPDmADAZ9H3E0bh07xjwfNTdu6_2bus221sXrcY0aLSDbiqtNBMNz-bl3vQYNG5izrm-ZEA5gFS0qgT_Bdder_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205975686</pqid></control><display><type>article</type><title>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</title><source>PubMed Central (Open Access)</source><source>E-Journals @ Highwire Press American Society for Microbiology</source><creator>Arabolaza, Ana ; Rodriguez, Eduardo ; Altabe, Silvia ; Alvarez, Hector ; Gramajo, Hugo</creator><creatorcontrib>Arabolaza, Ana ; Rodriguez, Eduardo ; Altabe, Silvia ; Alvarez, Hector ; Gramajo, Hugo</creatorcontrib><description>The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.02638-07</identifier><identifier>PMID: 18310412</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acinetobacter ; Acinetobacter - enzymology ; Acyl Coenzyme A - metabolism ; Acyltransferase ; Acyltransferases - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation & purification ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Cloning, Molecular ; Enzymes ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Dosage ; Gene Expression ; Genes ; Kinetics ; Lipids ; Metabolic Networks and Pathways ; Microbiology ; Physiology and Biotechnology ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Soil microorganisms ; Streptomyces coelicolor - enzymology ; Streptomyces coelicolor - genetics ; Streptomyces coelicolor - metabolism ; Triglycerides - biosynthesis ; Triglycerides - genetics</subject><ispartof>Applied and Environmental Microbiology, 2008-05, Vol.74 (9), p.2573-2582</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology May 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</citedby><cites>FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394905/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394905/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20320396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18310412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arabolaza, Ana</creatorcontrib><creatorcontrib>Rodriguez, Eduardo</creatorcontrib><creatorcontrib>Altabe, Silvia</creatorcontrib><creatorcontrib>Alvarez, Hector</creatorcontrib><creatorcontrib>Gramajo, Hugo</creatorcontrib><title>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.</description><subject>Acinetobacter</subject><subject>Acinetobacter - enzymology</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Acyltransferase</subject><subject>Acyltransferases - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation & purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Dosage</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Metabolic Networks and Pathways</subject><subject>Microbiology</subject><subject>Physiology and Biotechnology</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Soil microorganisms</subject><subject>Streptomyces coelicolor - enzymology</subject><subject>Streptomyces coelicolor - genetics</subject><subject>Streptomyces coelicolor - metabolism</subject><subject>Triglycerides - biosynthesis</subject><subject>Triglycerides - genetics</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpd0Utv1DAUBWALgehQ2LGGgAQrUq7tOLE3SKUqD6kjkNqurRvHmXHlxIOdUOXf4zKj8pAseXE_HV_rEPKcwgmlTL4_PV-fAKu5LKF5QFYUlCwF5_VDsgJQqmSsgiPyJKUbAKiglo_JEZWcQkXZiqzXs5_cztviO07bW1xS0YdYXEWHZvEbvxgbgy8-upCWcdra5FLhxuJyinY3hSGPU2GC9c4EH-JT8qhHn-yzw31Mrj-dX519KS--ff56dnpRGsFgKjtFGW1AgqpBYdt1Cm3FTNuamvKulsgA2kbQ3jSCM9ra1lKOPTS9MaY3LT8mH_a5u7kdbGfsOEX0ehfdgHHRAZ3-dzK6rd6En5pxVSkQOeDtISCGH7NNkx5cMtZ7HG2Yk2ZUgKwFy_D1f_AmzHHMn9MMhGpELeuM3u2RiSGlaPv7TSjou5J0Lkn_LklDk_mLv7f_gw-tZPDmADAZ9H3E0bh07xjwfNTdu6_2bus221sXrcY0aLSDbiqtNBMNz-bl3vQYNG5izrm-ZEA5gFS0qgT_Bdder_g</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Arabolaza, Ana</creator><creator>Rodriguez, Eduardo</creator><creator>Altabe, Silvia</creator><creator>Alvarez, Hector</creator><creator>Gramajo, Hugo</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</title><author>Arabolaza, Ana ; Rodriguez, Eduardo ; Altabe, Silvia ; Alvarez, Hector ; Gramajo, Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acinetobacter</topic><topic>Acinetobacter - enzymology</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Acyltransferase</topic><topic>Acyltransferases - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation & purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Dosage</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Metabolic Networks and Pathways</topic><topic>Microbiology</topic><topic>Physiology and Biotechnology</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Soil microorganisms</topic><topic>Streptomyces coelicolor - enzymology</topic><topic>Streptomyces coelicolor - genetics</topic><topic>Streptomyces coelicolor - metabolism</topic><topic>Triglycerides - biosynthesis</topic><topic>Triglycerides - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabolaza, Ana</creatorcontrib><creatorcontrib>Rodriguez, Eduardo</creatorcontrib><creatorcontrib>Altabe, Silvia</creatorcontrib><creatorcontrib>Alvarez, Hector</creatorcontrib><creatorcontrib>Gramajo, Hugo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabolaza, Ana</au><au>Rodriguez, Eduardo</au><au>Altabe, Silvia</au><au>Alvarez, Hector</au><au>Gramajo, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>74</volume><issue>9</issue><spage>2573</spage><epage>2582</epage><pages>2573-2582</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18310412</pmid><doi>10.1128/AEM.02638-07</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2008-05, Vol.74 (9), p.2573-2582 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_proquest_miscellaneous_21508652 |
source | PubMed Central (Open Access); E-Journals @ Highwire Press American Society for Microbiology |
subjects | Acinetobacter Acinetobacter - enzymology Acyl Coenzyme A - metabolism Acyltransferase Acyltransferases - metabolism Bacteria Bacterial Proteins - genetics Bacterial Proteins - isolation & purification Bacterial Proteins - metabolism Bacteriology Biological and medical sciences Cloning, Molecular Enzymes Fatty acids Fundamental and applied biological sciences. Psychology Gene Deletion Gene Dosage Gene Expression Genes Kinetics Lipids Metabolic Networks and Pathways Microbiology Physiology and Biotechnology Recombinant Proteins - genetics Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Sequence Homology, Amino Acid Soil microorganisms Streptomyces coelicolor - enzymology Streptomyces coelicolor - genetics Streptomyces coelicolor - metabolism Triglycerides - biosynthesis Triglycerides - genetics |
title | Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T20%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Pathways%20for%20Triacylglycerol%20Biosynthesis%20in%20Streptomyces%20coelicolor&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Arabolaza,%20Ana&rft.date=2008-05-01&rft.volume=74&rft.issue=9&rft.spage=2573&rft.epage=2582&rft.pages=2573-2582&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02638-07&rft_dat=%3Cproquest_pubme%3E1472594461%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205975686&rft_id=info:pmid/18310412&rfr_iscdi=true |