Loading…

Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor

The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recent...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2008-05, Vol.74 (9), p.2573-2582
Main Authors: Arabolaza, Ana, Rodriguez, Eduardo, Altabe, Silvia, Alvarez, Hector, Gramajo, Hugo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3
cites cdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3
container_end_page 2582
container_issue 9
container_start_page 2573
container_title Applied and Environmental Microbiology
container_volume 74
creator Arabolaza, Ana
Rodriguez, Eduardo
Altabe, Silvia
Alvarez, Hector
Gramajo, Hugo
description The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.
doi_str_mv 10.1128/AEM.02638-07
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_21508652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1472594461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</originalsourceid><addsrcrecordid>eNpd0Utv1DAUBWALgehQ2LGGgAQrUq7tOLE3SKUqD6kjkNqurRvHmXHlxIOdUOXf4zKj8pAseXE_HV_rEPKcwgmlTL4_PV-fAKu5LKF5QFYUlCwF5_VDsgJQqmSsgiPyJKUbAKiglo_JEZWcQkXZiqzXs5_cztviO07bW1xS0YdYXEWHZvEbvxgbgy8-upCWcdra5FLhxuJyinY3hSGPU2GC9c4EH-JT8qhHn-yzw31Mrj-dX519KS--ff56dnpRGsFgKjtFGW1AgqpBYdt1Cm3FTNuamvKulsgA2kbQ3jSCM9ra1lKOPTS9MaY3LT8mH_a5u7kdbGfsOEX0ehfdgHHRAZ3-dzK6rd6En5pxVSkQOeDtISCGH7NNkx5cMtZ7HG2Yk2ZUgKwFy_D1f_AmzHHMn9MMhGpELeuM3u2RiSGlaPv7TSjou5J0Lkn_LklDk_mLv7f_gw-tZPDmADAZ9H3E0bh07xjwfNTdu6_2bus221sXrcY0aLSDbiqtNBMNz-bl3vQYNG5izrm-ZEA5gFS0qgT_Bdder_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205975686</pqid></control><display><type>article</type><title>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</title><source>PubMed Central (Open Access)</source><source>E-Journals @ Highwire Press American Society for Microbiology</source><creator>Arabolaza, Ana ; Rodriguez, Eduardo ; Altabe, Silvia ; Alvarez, Hector ; Gramajo, Hugo</creator><creatorcontrib>Arabolaza, Ana ; Rodriguez, Eduardo ; Altabe, Silvia ; Alvarez, Hector ; Gramajo, Hugo</creatorcontrib><description>The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.02638-07</identifier><identifier>PMID: 18310412</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acinetobacter ; Acinetobacter - enzymology ; Acyl Coenzyme A - metabolism ; Acyltransferase ; Acyltransferases - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Cloning, Molecular ; Enzymes ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Dosage ; Gene Expression ; Genes ; Kinetics ; Lipids ; Metabolic Networks and Pathways ; Microbiology ; Physiology and Biotechnology ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation &amp; purification ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Soil microorganisms ; Streptomyces coelicolor - enzymology ; Streptomyces coelicolor - genetics ; Streptomyces coelicolor - metabolism ; Triglycerides - biosynthesis ; Triglycerides - genetics</subject><ispartof>Applied and Environmental Microbiology, 2008-05, Vol.74 (9), p.2573-2582</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology May 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</citedby><cites>FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394905/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394905/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20320396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18310412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arabolaza, Ana</creatorcontrib><creatorcontrib>Rodriguez, Eduardo</creatorcontrib><creatorcontrib>Altabe, Silvia</creatorcontrib><creatorcontrib>Alvarez, Hector</creatorcontrib><creatorcontrib>Gramajo, Hugo</creatorcontrib><title>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.</description><subject>Acinetobacter</subject><subject>Acinetobacter - enzymology</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Acyltransferase</subject><subject>Acyltransferases - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Dosage</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Metabolic Networks and Pathways</subject><subject>Microbiology</subject><subject>Physiology and Biotechnology</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Soil microorganisms</subject><subject>Streptomyces coelicolor - enzymology</subject><subject>Streptomyces coelicolor - genetics</subject><subject>Streptomyces coelicolor - metabolism</subject><subject>Triglycerides - biosynthesis</subject><subject>Triglycerides - genetics</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpd0Utv1DAUBWALgehQ2LGGgAQrUq7tOLE3SKUqD6kjkNqurRvHmXHlxIOdUOXf4zKj8pAseXE_HV_rEPKcwgmlTL4_PV-fAKu5LKF5QFYUlCwF5_VDsgJQqmSsgiPyJKUbAKiglo_JEZWcQkXZiqzXs5_cztviO07bW1xS0YdYXEWHZvEbvxgbgy8-upCWcdra5FLhxuJyinY3hSGPU2GC9c4EH-JT8qhHn-yzw31Mrj-dX519KS--ff56dnpRGsFgKjtFGW1AgqpBYdt1Cm3FTNuamvKulsgA2kbQ3jSCM9ra1lKOPTS9MaY3LT8mH_a5u7kdbGfsOEX0ehfdgHHRAZ3-dzK6rd6En5pxVSkQOeDtISCGH7NNkx5cMtZ7HG2Yk2ZUgKwFy_D1f_AmzHHMn9MMhGpELeuM3u2RiSGlaPv7TSjou5J0Lkn_LklDk_mLv7f_gw-tZPDmADAZ9H3E0bh07xjwfNTdu6_2bus221sXrcY0aLSDbiqtNBMNz-bl3vQYNG5izrm-ZEA5gFS0qgT_Bdder_g</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Arabolaza, Ana</creator><creator>Rodriguez, Eduardo</creator><creator>Altabe, Silvia</creator><creator>Alvarez, Hector</creator><creator>Gramajo, Hugo</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</title><author>Arabolaza, Ana ; Rodriguez, Eduardo ; Altabe, Silvia ; Alvarez, Hector ; Gramajo, Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acinetobacter</topic><topic>Acinetobacter - enzymology</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Acyltransferase</topic><topic>Acyltransferases - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Dosage</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Metabolic Networks and Pathways</topic><topic>Microbiology</topic><topic>Physiology and Biotechnology</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Soil microorganisms</topic><topic>Streptomyces coelicolor - enzymology</topic><topic>Streptomyces coelicolor - genetics</topic><topic>Streptomyces coelicolor - metabolism</topic><topic>Triglycerides - biosynthesis</topic><topic>Triglycerides - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabolaza, Ana</creatorcontrib><creatorcontrib>Rodriguez, Eduardo</creatorcontrib><creatorcontrib>Altabe, Silvia</creatorcontrib><creatorcontrib>Alvarez, Hector</creatorcontrib><creatorcontrib>Gramajo, Hugo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabolaza, Ana</au><au>Rodriguez, Eduardo</au><au>Altabe, Silvia</au><au>Alvarez, Hector</au><au>Gramajo, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>74</volume><issue>9</issue><spage>2573</spage><epage>2582</epage><pages>2573-2582</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C₁₄ to C₁₈) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg⁻¹ min⁻¹, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18310412</pmid><doi>10.1128/AEM.02638-07</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2008-05, Vol.74 (9), p.2573-2582
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_proquest_miscellaneous_21508652
source PubMed Central (Open Access); E-Journals @ Highwire Press American Society for Microbiology
subjects Acinetobacter
Acinetobacter - enzymology
Acyl Coenzyme A - metabolism
Acyltransferase
Acyltransferases - metabolism
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
Cloning, Molecular
Enzymes
Fatty acids
Fundamental and applied biological sciences. Psychology
Gene Deletion
Gene Dosage
Gene Expression
Genes
Kinetics
Lipids
Metabolic Networks and Pathways
Microbiology
Physiology and Biotechnology
Recombinant Proteins - genetics
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
Soil microorganisms
Streptomyces coelicolor - enzymology
Streptomyces coelicolor - genetics
Streptomyces coelicolor - metabolism
Triglycerides - biosynthesis
Triglycerides - genetics
title Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T20%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Pathways%20for%20Triacylglycerol%20Biosynthesis%20in%20Streptomyces%20coelicolor&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Arabolaza,%20Ana&rft.date=2008-05-01&rft.volume=74&rft.issue=9&rft.spage=2573&rft.epage=2582&rft.pages=2573-2582&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02638-07&rft_dat=%3Cproquest_pubme%3E1472594461%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-d912170809609abdd9ae42cbbc613d68a200b751fc75321bebe13af07fcccfcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205975686&rft_id=info:pmid/18310412&rfr_iscdi=true