Loading…

The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation

Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 1997-03, Vol.12 (1), p.11-30
Main Authors: BRAKKEE, E, WILDERS, P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 30
container_issue 1
container_start_page 11
container_title Journal of scientific computing
container_volume 12
creator BRAKKEE, E
WILDERS, P
description Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.
doi_str_mv 10.1023/A:1025602319278
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_21547250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21547250</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-59c3baf919cabda0fc4e6ead2ab0eaa0009be32fed1b1a06f976ba049dcedbcd3</originalsourceid><addsrcrecordid>eNpdj71PwzAQxS0EEqUws0YCsQVs59NsVcWXqMRAmaOLfaapEju1k6Iy8aeTQFmY7t673z3dEXLO6DWjPLqZ3Q4lSYeWCZ7lB2TCkiwKs1SwQzKheZ6EWZzFx-TE-zWlVOSCT8jXcoVBZXTdo5EYWD2IDp2GQUhrVNVV1vjAmlFt0b3_Yc9uV9tt-CpXH-A-A2UbqEygUNqmtf5nLdDWBd2QD2qLcnRCVWnd-3GGmx5G65Qcaag9nu3rlLzd3y3nj-Hi5eFpPluELUvSLkyEjErQggkJpQKqZYwpguJQUgQY_ykx4hoVKxnQVIssLYHGQklUpVTRlFz95rbObnr0XdFUXmJdg0Hb-4KzJM54Qgfw4h-4tr0zw20FFyyPqKAZG6jLPQVeQq0dGFn5onVVA25XcJrmEafRN4HvgA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918309071</pqid></control><display><type>article</type><title>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</title><source>Springer Nature</source><creator>BRAKKEE, E ; WILDERS, P</creator><creatorcontrib>BRAKKEE, E ; WILDERS, P</creatorcontrib><description>Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1023/A:1025602319278</identifier><identifier>CODEN: JSCOEB</identifier><language>eng</language><publisher>London: Plenum Publishing</publisher><subject>Advection-diffusion equation ; Algorithms ; Convergence ; Decomposition ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; Subspaces</subject><ispartof>Journal of scientific computing, 1997-03, Vol.12 (1), p.11-30</ispartof><rights>1998 INIST-CNRS</rights><rights>Plenum Publishing Corporation 1997.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2068320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRAKKEE, E</creatorcontrib><creatorcontrib>WILDERS, P</creatorcontrib><title>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</title><title>Journal of scientific computing</title><description>Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.</description><subject>Advection-diffusion equation</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Subspaces</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpdj71PwzAQxS0EEqUws0YCsQVs59NsVcWXqMRAmaOLfaapEju1k6Iy8aeTQFmY7t673z3dEXLO6DWjPLqZ3Q4lSYeWCZ7lB2TCkiwKs1SwQzKheZ6EWZzFx-TE-zWlVOSCT8jXcoVBZXTdo5EYWD2IDp2GQUhrVNVV1vjAmlFt0b3_Yc9uV9tt-CpXH-A-A2UbqEygUNqmtf5nLdDWBd2QD2qLcnRCVWnd-3GGmx5G65Qcaag9nu3rlLzd3y3nj-Hi5eFpPluELUvSLkyEjErQggkJpQKqZYwpguJQUgQY_ykx4hoVKxnQVIssLYHGQklUpVTRlFz95rbObnr0XdFUXmJdg0Hb-4KzJM54Qgfw4h-4tr0zw20FFyyPqKAZG6jLPQVeQq0dGFn5onVVA25XcJrmEafRN4HvgA0</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>BRAKKEE, E</creator><creator>WILDERS, P</creator><general>Plenum Publishing</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970301</creationdate><title>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</title><author>BRAKKEE, E ; WILDERS, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-59c3baf919cabda0fc4e6ead2ab0eaa0009be32fed1b1a06f976ba049dcedbcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Advection-diffusion equation</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRAKKEE, E</creatorcontrib><creatorcontrib>WILDERS, P</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRAKKEE, E</au><au>WILDERS, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</atitle><jtitle>Journal of scientific computing</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>12</volume><issue>1</issue><spage>11</spage><epage>30</epage><pages>11-30</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><coden>JSCOEB</coden><abstract>Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.</abstract><cop>London</cop><cop>New York, NY</cop><pub>Plenum Publishing</pub><doi>10.1023/A:1025602319278</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 1997-03, Vol.12 (1), p.11-30
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_21547250
source Springer Nature
subjects Advection-diffusion equation
Algorithms
Convergence
Decomposition
Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations, boundary value problems
Sciences and techniques of general use
Subspaces
title The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20interface%20conditions%20on%20convergence%20of%20Krylov-Schwarz%20domain%20decomposition%20for%20the%20advection-diffusion%20equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=BRAKKEE,%20E&rft.date=1997-03-01&rft.volume=12&rft.issue=1&rft.spage=11&rft.epage=30&rft.pages=11-30&rft.issn=0885-7474&rft.eissn=1573-7691&rft.coden=JSCOEB&rft_id=info:doi/10.1023/A:1025602319278&rft_dat=%3Cproquest_pasca%3E21547250%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p156t-59c3baf919cabda0fc4e6ead2ab0eaa0009be32fed1b1a06f976ba049dcedbcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918309071&rft_id=info:pmid/&rfr_iscdi=true