Loading…
The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation
Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize...
Saved in:
Published in: | Journal of scientific computing 1997-03, Vol.12 (1), p.11-30 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 30 |
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of scientific computing |
container_volume | 12 |
creator | BRAKKEE, E WILDERS, P |
description | Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed. |
doi_str_mv | 10.1023/A:1025602319278 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_21547250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21547250</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-59c3baf919cabda0fc4e6ead2ab0eaa0009be32fed1b1a06f976ba049dcedbcd3</originalsourceid><addsrcrecordid>eNpdj71PwzAQxS0EEqUws0YCsQVs59NsVcWXqMRAmaOLfaapEju1k6Iy8aeTQFmY7t673z3dEXLO6DWjPLqZ3Q4lSYeWCZ7lB2TCkiwKs1SwQzKheZ6EWZzFx-TE-zWlVOSCT8jXcoVBZXTdo5EYWD2IDp2GQUhrVNVV1vjAmlFt0b3_Yc9uV9tt-CpXH-A-A2UbqEygUNqmtf5nLdDWBd2QD2qLcnRCVWnd-3GGmx5G65Qcaag9nu3rlLzd3y3nj-Hi5eFpPluELUvSLkyEjErQggkJpQKqZYwpguJQUgQY_ykx4hoVKxnQVIssLYHGQklUpVTRlFz95rbObnr0XdFUXmJdg0Hb-4KzJM54Qgfw4h-4tr0zw20FFyyPqKAZG6jLPQVeQq0dGFn5onVVA25XcJrmEafRN4HvgA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918309071</pqid></control><display><type>article</type><title>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</title><source>Springer Nature</source><creator>BRAKKEE, E ; WILDERS, P</creator><creatorcontrib>BRAKKEE, E ; WILDERS, P</creatorcontrib><description>Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1023/A:1025602319278</identifier><identifier>CODEN: JSCOEB</identifier><language>eng</language><publisher>London: Plenum Publishing</publisher><subject>Advection-diffusion equation ; Algorithms ; Convergence ; Decomposition ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; Subspaces</subject><ispartof>Journal of scientific computing, 1997-03, Vol.12 (1), p.11-30</ispartof><rights>1998 INIST-CNRS</rights><rights>Plenum Publishing Corporation 1997.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2068320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRAKKEE, E</creatorcontrib><creatorcontrib>WILDERS, P</creatorcontrib><title>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</title><title>Journal of scientific computing</title><description>Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.</description><subject>Advection-diffusion equation</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Subspaces</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpdj71PwzAQxS0EEqUws0YCsQVs59NsVcWXqMRAmaOLfaapEju1k6Iy8aeTQFmY7t673z3dEXLO6DWjPLqZ3Q4lSYeWCZ7lB2TCkiwKs1SwQzKheZ6EWZzFx-TE-zWlVOSCT8jXcoVBZXTdo5EYWD2IDp2GQUhrVNVV1vjAmlFt0b3_Yc9uV9tt-CpXH-A-A2UbqEygUNqmtf5nLdDWBd2QD2qLcnRCVWnd-3GGmx5G65Qcaag9nu3rlLzd3y3nj-Hi5eFpPluELUvSLkyEjErQggkJpQKqZYwpguJQUgQY_ykx4hoVKxnQVIssLYHGQklUpVTRlFz95rbObnr0XdFUXmJdg0Hb-4KzJM54Qgfw4h-4tr0zw20FFyyPqKAZG6jLPQVeQq0dGFn5onVVA25XcJrmEafRN4HvgA0</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>BRAKKEE, E</creator><creator>WILDERS, P</creator><general>Plenum Publishing</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970301</creationdate><title>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</title><author>BRAKKEE, E ; WILDERS, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-59c3baf919cabda0fc4e6ead2ab0eaa0009be32fed1b1a06f976ba049dcedbcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Advection-diffusion equation</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRAKKEE, E</creatorcontrib><creatorcontrib>WILDERS, P</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRAKKEE, E</au><au>WILDERS, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation</atitle><jtitle>Journal of scientific computing</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>12</volume><issue>1</issue><spage>11</spage><epage>30</epage><pages>11-30</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><coden>JSCOEB</coden><abstract>Several variants of Schwarz domain decomposition, which differ in the choice of interface conditions, are studied in a finite volume context. Krylov subspace acceleration, GMRES in this paper, is used to accelerate convergence. Using a detailed investigation of the systems involved, we can minimize the memory requirements of GMRES acceleration. It is shown how Krylov subspace acceleration can be easily built on top of an already implemented Schwarz domain decomposition iteration, which makes Krylov-Schwarz algorithms easy to use in practice. The convergence rate is investigated both theoretically and experimentally. It is observed that the Krylov subspace accelerated algorithm is quite insensitive to the type of interface conditions employed.</abstract><cop>London</cop><cop>New York, NY</cop><pub>Plenum Publishing</pub><doi>10.1023/A:1025602319278</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 1997-03, Vol.12 (1), p.11-30 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_miscellaneous_21547250 |
source | Springer Nature |
subjects | Advection-diffusion equation Algorithms Convergence Decomposition Exact sciences and technology Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations, boundary value problems Sciences and techniques of general use Subspaces |
title | The influence of interface conditions on convergence of Krylov-Schwarz domain decomposition for the advection-diffusion equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20interface%20conditions%20on%20convergence%20of%20Krylov-Schwarz%20domain%20decomposition%20for%20the%20advection-diffusion%20equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=BRAKKEE,%20E&rft.date=1997-03-01&rft.volume=12&rft.issue=1&rft.spage=11&rft.epage=30&rft.pages=11-30&rft.issn=0885-7474&rft.eissn=1573-7691&rft.coden=JSCOEB&rft_id=info:doi/10.1023/A:1025602319278&rft_dat=%3Cproquest_pasca%3E21547250%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p156t-59c3baf919cabda0fc4e6ead2ab0eaa0009be32fed1b1a06f976ba049dcedbcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918309071&rft_id=info:pmid/&rfr_iscdi=true |