Loading…

Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes

Carbon dot- and magnetite-modified magnetic carbon nanotubes (CMNTs) were synthesized and evaluated for carbamazepine removal from water. The adsorbent was characterized by multiple modern surface and microstructure analyzing techniques. CMNTs were composed of three components including carbon dots...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2019-02, Vol.169, p.434-444
Main Authors: Deng, Yanchun, Ok, Yong Sik, Mohan, Dinesh, Pittman, Charles U., Dou, Xiaomin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon dot- and magnetite-modified magnetic carbon nanotubes (CMNTs) were synthesized and evaluated for carbamazepine removal from water. The adsorbent was characterized by multiple modern surface and microstructure analyzing techniques. CMNTs were composed of three components including carbon dots (CDs), carbon nanotubes (CNTs) and magnetite. CDs and CNTs introduce abundant carboxyl groups onto CMNTs and magnetite allows rapid magnetic separation of the adsorbent realizable after batch adsorption. This adsorbent has a moderately high adsorption capacity of 65 mg-carbamazepine/g-adsorbent at pH 7.0 ± 0.2, which is superior to many reported adsorbents. Carbamazepine was uptaken well in a wide pH range, regardless of the surface charging of CMNTs. Its adsorption on CMNTs was quite fast and reached 80% of removal during the initial 3 h. The mass transfer within CMNTs and the time-dependent utilization, exhaustion and depletion of the adsorption capacity were successfully described using a simplified homogeneous surface diffusion model (HSDM). The surface diffusion coefficients (Ds) rose with increasing initial carbamazepine concentrations. After six regeneration and recycle experiments, the capacity loss of CMNTs was less than 2.2% at the conditions tested. FTIR spectra showed the characteristics of the components. Raman spectra implied a π-π electron donor-acceptor (EDA) interaction during adsorption. This work proposed a method of combining π-bond-rich materials (CNTs and CDs) and magnetite to make separable composite adsorbents with high affinity interactions between carbamazepine and carbon materials. The prepared adsorbent is attractive for carbamazepine removal due to its good performance, moderate cost, ease of separation, and ability to regenerate. •A carbon dot modified magnetic carbon nanotube (CMNT) adsorbent was fabricated.•CDs and CNTs bring carboxyl groups and magnetite makes separation realizable.•The mass transfer within particles was visually described using a HSDM model.•Carbamazepine was taken over a wide pH range regardless of the surface charges.•π-π electron donor-acceptor interaction and H-bonding respond for adsorption.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2018.11.035