Loading…
Clopidogrel reduces lipopolysaccharide‐induced inflammation and neutrophil‐platelet aggregates in an experimental endotoxemic model
Platelet activation contributes to organs failure in inflammation and plays an important role in endotoxemia. Clopidogrel inhibits platelet aggregation and activation. However, the role of clopidogrel in modulating inflammatory progression of endotoxemia remains largely unexplored. Therefore, we inv...
Saved in:
Published in: | Journal of biochemical and molecular toxicology 2019-04, Vol.33 (4), p.e22279-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Platelet activation contributes to organs failure in inflammation and plays an important role in endotoxemia. Clopidogrel inhibits platelet aggregation and activation. However, the role of clopidogrel in modulating inflammatory progression of endotoxemia remains largely unexplored. Therefore, we investigated the role of clopidogrel on the activation of platelet and leukocytes in lipopolysaccharide (LPS)‐induced inflammation in mice. Animals were treated with clopidogrel or vehicle before LPS induction. The expression of neutrophil‐platelet aggregates and platelet activation and tissue factor was determined. Immunofluorescence was used to analyze platelet‐leukocyte interactions and tissue factor (TF) expression on leukocytes. Clopidogrel pretreatment markedly decreased lung damage, inhibited platelet‐neutrophil aggregates and TF expression. In addition, clopidogrel reduced thrombocytopenia and affected the number of circulating white blood cell in endotoxemia mice. Moreover, clopidogrel also reduced platelet shedding of CD40L and CD62P in endotoxemic mice. Taken together, clopidogrel played an important role through reducing platelet activation and inflammatory process in endotoxemia. |
---|---|
ISSN: | 1095-6670 1099-0461 |
DOI: | 10.1002/jbt.22279 |