Loading…
Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability
AgWH50C, an exo-β-agarase of GH50 isolated from Agarivorans gilvus WH0801, plays a key role in the enzymatic production of neoagarobiose, which has great application prospect in the cosmetics and pharmaceutical industry. In contrast, the poor thermostability becomes the main obstructive factor of gl...
Saved in:
Published in: | Applied microbiology and biotechnology 2019-02, Vol.103 (3), p.1289-1298 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3 |
container_end_page | 1298 |
container_issue | 3 |
container_start_page | 1289 |
container_title | Applied microbiology and biotechnology |
container_volume | 103 |
creator | Zhang, Pujuan Zhang, Jinru Zhang, Lujia Sun, Jianan Li, Yuan Wu, Lian Zhou, Jiahai Xue, Changhu Mao, Xiangzhao |
description | AgWH50C, an exo-β-agarase of GH50 isolated from
Agarivorans gilvus
WH0801, plays a key role in the enzymatic production of neoagarobiose, which has great application prospect in the cosmetics and pharmaceutical industry. In contrast, the poor thermostability becomes the main obstructive factor of glycoside hydrolase (GH) family 50 agarases, including AgWH50C. Herein, based on the AgWH50C crystal structure, we designed several mutants by a multiple cross-linked rational design protocol used thermostability predicting softwares ETSS, PoPMuSiC, and HotMuSiC. To our surprise, the mutant K621F increased its relative activity by as much as 45% and the optimal temperature increased to 38 °C compared to that of wild-type, AgWH50C (30 °C). The thermostability of K621F also exhibited a substantial improvement. Considering that the gelling temperature of the agarose is higher than 35 °C, K621F can be used to hydrolyze agarose for neoagarobiose production. |
doi_str_mv | 10.1007/s00253-018-9540-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2155928948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155928948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EotvCD-CCLHHhYpjxRxIfqxWwSJU4AOrRcpxJmiqJi51U6r_Hq21BQuI0mplnXnvmZewNwgcEqD9mAGmUAGyENRoEPmM71EoKqFA_ZzvA2oja2OaMned8C4CyqaqX7EyBkUrVuGPh-5q2sG6JROszdbyjPA4Ljz33g0-lxC-H64OBPe9TnEvi03gfk18yH8bpfsv8-gANIF8jp-XGL4H4ekNpjnn17TiN68Mr9qL3U6bXj_GC_fz86cf-IK6-ffm6v7wSQdVyFaHWVCnTErTSQEW2DQC2603bdLaRrday7Ksw9FJD0N52XuleYdMTQVUHdcHen3TvUvy1UV7dPOZA0-QXilt2Eo2xsrG6Kei7f9DbuKWl_O5IgdWo8UjhiQop5pyod3dpnH16cAju6IA7OeCKA-7ogMMy8_ZReWtn6v5MPJ28APIE5NJaBkp_n_6_6m8GBY83</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150941418</pqid></control><display><type>article</type><title>Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Zhang, Pujuan ; Zhang, Jinru ; Zhang, Lujia ; Sun, Jianan ; Li, Yuan ; Wu, Lian ; Zhou, Jiahai ; Xue, Changhu ; Mao, Xiangzhao</creator><creatorcontrib>Zhang, Pujuan ; Zhang, Jinru ; Zhang, Lujia ; Sun, Jianan ; Li, Yuan ; Wu, Lian ; Zhou, Jiahai ; Xue, Changhu ; Mao, Xiangzhao</creatorcontrib><description>AgWH50C, an exo-β-agarase of GH50 isolated from
Agarivorans gilvus
WH0801, plays a key role in the enzymatic production of neoagarobiose, which has great application prospect in the cosmetics and pharmaceutical industry. In contrast, the poor thermostability becomes the main obstructive factor of glycoside hydrolase (GH) family 50 agarases, including AgWH50C. Herein, based on the AgWH50C crystal structure, we designed several mutants by a multiple cross-linked rational design protocol used thermostability predicting softwares ETSS, PoPMuSiC, and HotMuSiC. To our surprise, the mutant K621F increased its relative activity by as much as 45% and the optimal temperature increased to 38 °C compared to that of wild-type, AgWH50C (30 °C). The thermostability of K621F also exhibited a substantial improvement. Considering that the gelling temperature of the agarose is higher than 35 °C, K621F can be used to hydrolyze agarose for neoagarobiose production.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-018-9540-1</identifier><identifier>PMID: 30523371</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agarase ; Agarivorans gilvus ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Chromatography ; Cloning ; Cosmetics ; Crosslinking ; Crystal structure ; E coli ; Enzymes ; Gelation ; Glycoside hydrolase ; Hydrolase ; Laboratories ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Pharmaceutical industry ; Physiology ; Plasmids ; Proteins ; Thermal stability</subject><ispartof>Applied microbiology and biotechnology, 2019-02, Vol.103 (3), p.1289-1298</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3</citedby><cites>FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3</cites><orcidid>0000-0002-6315-1338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2150941418/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2150941418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30523371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pujuan</creatorcontrib><creatorcontrib>Zhang, Jinru</creatorcontrib><creatorcontrib>Zhang, Lujia</creatorcontrib><creatorcontrib>Sun, Jianan</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Wu, Lian</creatorcontrib><creatorcontrib>Zhou, Jiahai</creatorcontrib><creatorcontrib>Xue, Changhu</creatorcontrib><creatorcontrib>Mao, Xiangzhao</creatorcontrib><title>Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>AgWH50C, an exo-β-agarase of GH50 isolated from
Agarivorans gilvus
WH0801, plays a key role in the enzymatic production of neoagarobiose, which has great application prospect in the cosmetics and pharmaceutical industry. In contrast, the poor thermostability becomes the main obstructive factor of glycoside hydrolase (GH) family 50 agarases, including AgWH50C. Herein, based on the AgWH50C crystal structure, we designed several mutants by a multiple cross-linked rational design protocol used thermostability predicting softwares ETSS, PoPMuSiC, and HotMuSiC. To our surprise, the mutant K621F increased its relative activity by as much as 45% and the optimal temperature increased to 38 °C compared to that of wild-type, AgWH50C (30 °C). The thermostability of K621F also exhibited a substantial improvement. Considering that the gelling temperature of the agarose is higher than 35 °C, K621F can be used to hydrolyze agarose for neoagarobiose production.</description><subject>Agarase</subject><subject>Agarivorans gilvus</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Chromatography</subject><subject>Cloning</subject><subject>Cosmetics</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Gelation</subject><subject>Glycoside hydrolase</subject><subject>Hydrolase</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Pharmaceutical industry</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Thermal stability</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1v1DAQhi0EotvCD-CCLHHhYpjxRxIfqxWwSJU4AOrRcpxJmiqJi51U6r_Hq21BQuI0mplnXnvmZewNwgcEqD9mAGmUAGyENRoEPmM71EoKqFA_ZzvA2oja2OaMned8C4CyqaqX7EyBkUrVuGPh-5q2sG6JROszdbyjPA4Ljz33g0-lxC-H64OBPe9TnEvi03gfk18yH8bpfsv8-gANIF8jp-XGL4H4ekNpjnn17TiN68Mr9qL3U6bXj_GC_fz86cf-IK6-ffm6v7wSQdVyFaHWVCnTErTSQEW2DQC2603bdLaRrday7Ksw9FJD0N52XuleYdMTQVUHdcHen3TvUvy1UV7dPOZA0-QXilt2Eo2xsrG6Kei7f9DbuKWl_O5IgdWo8UjhiQop5pyod3dpnH16cAju6IA7OeCKA-7ogMMy8_ZReWtn6v5MPJ28APIE5NJaBkp_n_6_6m8GBY83</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhang, Pujuan</creator><creator>Zhang, Jinru</creator><creator>Zhang, Lujia</creator><creator>Sun, Jianan</creator><creator>Li, Yuan</creator><creator>Wu, Lian</creator><creator>Zhou, Jiahai</creator><creator>Xue, Changhu</creator><creator>Mao, Xiangzhao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6315-1338</orcidid></search><sort><creationdate>20190201</creationdate><title>Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability</title><author>Zhang, Pujuan ; Zhang, Jinru ; Zhang, Lujia ; Sun, Jianan ; Li, Yuan ; Wu, Lian ; Zhou, Jiahai ; Xue, Changhu ; Mao, Xiangzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agarase</topic><topic>Agarivorans gilvus</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Chromatography</topic><topic>Cloning</topic><topic>Cosmetics</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Gelation</topic><topic>Glycoside hydrolase</topic><topic>Hydrolase</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Pharmaceutical industry</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pujuan</creatorcontrib><creatorcontrib>Zhang, Jinru</creatorcontrib><creatorcontrib>Zhang, Lujia</creatorcontrib><creatorcontrib>Sun, Jianan</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Wu, Lian</creatorcontrib><creatorcontrib>Zhou, Jiahai</creatorcontrib><creatorcontrib>Xue, Changhu</creatorcontrib><creatorcontrib>Mao, Xiangzhao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pujuan</au><au>Zhang, Jinru</au><au>Zhang, Lujia</au><au>Sun, Jianan</au><au>Li, Yuan</au><au>Wu, Lian</au><au>Zhou, Jiahai</au><au>Xue, Changhu</au><au>Mao, Xiangzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>103</volume><issue>3</issue><spage>1289</spage><epage>1298</epage><pages>1289-1298</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>AgWH50C, an exo-β-agarase of GH50 isolated from
Agarivorans gilvus
WH0801, plays a key role in the enzymatic production of neoagarobiose, which has great application prospect in the cosmetics and pharmaceutical industry. In contrast, the poor thermostability becomes the main obstructive factor of glycoside hydrolase (GH) family 50 agarases, including AgWH50C. Herein, based on the AgWH50C crystal structure, we designed several mutants by a multiple cross-linked rational design protocol used thermostability predicting softwares ETSS, PoPMuSiC, and HotMuSiC. To our surprise, the mutant K621F increased its relative activity by as much as 45% and the optimal temperature increased to 38 °C compared to that of wild-type, AgWH50C (30 °C). The thermostability of K621F also exhibited a substantial improvement. Considering that the gelling temperature of the agarose is higher than 35 °C, K621F can be used to hydrolyze agarose for neoagarobiose production.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30523371</pmid><doi>10.1007/s00253-018-9540-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6315-1338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2019-02, Vol.103 (3), p.1289-1298 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2155928948 |
source | ABI/INFORM global; Springer Link |
subjects | Agarase Agarivorans gilvus Biomedical and Life Sciences Biotechnologically Relevant Enzymes and Proteins Biotechnology Chromatography Cloning Cosmetics Crosslinking Crystal structure E coli Enzymes Gelation Glycoside hydrolase Hydrolase Laboratories Life Sciences Microbial Genetics and Genomics Microbiology Pharmaceutical industry Physiology Plasmids Proteins Thermal stability |
title | Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-based%20design%20of%20agarase%20AgWH50C%20from%20Agarivorans%20gilvus%20WH0801%20to%20enhance%20thermostability&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhang,%20Pujuan&rft.date=2019-02-01&rft.volume=103&rft.issue=3&rft.spage=1289&rft.epage=1298&rft.pages=1289-1298&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-018-9540-1&rft_dat=%3Cproquest_cross%3E2155928948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-c74e635be0b2506e9bc009df5b8d982b44200231cf240c4a9da34f318fee067c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2150941418&rft_id=info:pmid/30523371&rfr_iscdi=true |