Loading…

Metal‐Ion Tuning in Triple‐Stranded Helicate‐Based Metallosupramolecules

Effective incorporation of multiple types of ligands in a given coordination structure provides structural complexity and functional diversity to the resultant coordination‐driven assembly. One of the most widely used synthetic approaches is the utilization of the molecular symmetry principle to com...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2019-02, Vol.25 (10), p.2472-2476
Main Authors: Thi Le, Van Cam, Mai, Hien Duy, Kang, Philjae, Yoo, Hyojong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effective incorporation of multiple types of ligands in a given coordination structure provides structural complexity and functional diversity to the resultant coordination‐driven assembly. One of the most widely used synthetic approaches is the utilization of the molecular symmetry principle to combine multiple ligands and specific metallic centers in a preferred manner. The variation of metal ions can be helpful to understand the importance of symmetry for the generation of structurally hierarchical supramolecular platforms. We describe the synthesis and characterization of isostructural supramolecular helicates, [M8(PDA)6(AIP)3(DMF)6−x(H2O)x] (M=Ni (1), Co (2), and Mn (3); PDA=2,6‐pyridinedicarboxylate; AIP=5‐aminoisophthalate; x=0 for 1, and x=4 for 2 and 3). The effect of metal variation on the formation of supramolecular helicates and their solid‐state crystal packing are discussed. Despite the disparity in the ionic radii and distinct coordination‐geometry preferences of Co2+, Ni2+, and Mn2+, all metal centers engaged in the assembly with the heteroleptic ligands in the same manner to form isostructural supramolecular helicates. Metal ions in action! The synthesis and characterization of isostructural supramolecular helicates, [M8(PDA)6(AIP)3(DMF)6−x(H2O)x] [M=Ni (1), Co (2), and Mn (3); PDA=2,6‐pyridinedicarboxylate; AIP=5‐aminoisophthalate; x=0 for 1, and x=4 for 2 and 3] are reported. Despite the disparity in the ionic radii and distinct coordination geometry preferences of Co2+, Ni2+, and Mn2+, all metal centers engaged in the assembly with the heteroleptic ligands in the same manner to form isostructural supramolecular helicates.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201805686