Loading…

Critical Vortex Shedding in a Strongly Interacting Fermionic Superfluid

We study the critical vortex shedding in a strongly interacting fermionic superfluid of ^{6}Li across the BEC-BCS crossover. By moving an optical obstacle in the sample and directly imaging the vortices after the time of flight, the critical velocity u_{vor} for vortex shedding is measured as a func...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2018-11, Vol.121 (22), p.225301-225301, Article 225301
Main Authors: Park, Jee Woo, Ko, Bumsuk, Shin, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the critical vortex shedding in a strongly interacting fermionic superfluid of ^{6}Li across the BEC-BCS crossover. By moving an optical obstacle in the sample and directly imaging the vortices after the time of flight, the critical velocity u_{vor} for vortex shedding is measured as a function of the obstacle travel distance L. The observed u_{vor} increases with decreasing L, where the rate of increase is the highest in the unitary regime. In the deep Bose-Einstein condensation regime, an empirical dissipation model well captures the dependence of u_{vor} on L, characterized by a constant value of η=-[d(1/u_{vor})/d(1/L)]. However, as the system is tuned across the resonance, a step increase of η develops about a characteristic distance L_{c} as L is increased, where L_{c} is comparable to the obstacle size. This bimodal behavior is strengthened as the system is tuned towards the BCS regime. We attribute this evolution of u_{vor} to the emergence of the underlying fermionic degree of freedom in the vortex-shedding dynamics of a Fermi condensate.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.121.225301