Loading…

Posteromedial rotatory incongruity of the elbow: a computational kinematics study

Our objective was to analyze the effect of different anteromedial coronoid fracture patterns with different combinations of ligamentous repairs. We hypothesized that smaller fractures would be sufficiently treated with ligamentous repair alone but that larger fragments would require a combination of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of shoulder and elbow surgery 2019-02, Vol.28 (2), p.371-380
Main Authors: Karademir, Gokhan, Bachman, Daniel R., Stylianou, Antonis P., Cil, Akin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our objective was to analyze the effect of different anteromedial coronoid fracture patterns with different combinations of ligamentous repairs. We hypothesized that smaller fractures would be sufficiently treated with ligamentous repair alone but that larger fragments would require a combination of ligament and bony repair versus reconstruction. Two multibody models were created from cadaveric specimens in the ADAMS program. Four different conditions were simulated: (1) no fracture, (2) O'Driscoll anteromedial subtype I (2.5-mm) fracture, (3) subtype II 2.5-mm fracture, and (4) subtype II 5-mm fracture. In each of these conditions, 3 ligament repairs were studied: lateral ulnar collateral ligament (LUCL), posterior bundle of the medial collateral ligament (pMCL), and both LUCL and pMCL. For each condition, kinematics and articular contact areas were calculated. LUCL repair alone increases whereas pMCL repair decreases internal rotation of the ulna relative to all tested posteromedial rotatory instability conditions; their rotational effects are summative when both ligaments are repaired. With a subtype I fracture and both pMCL and LUCL injuries, repairing the LUCL alone corrects angulation whereas rotational stability is satisfactory through the arc from 0° to 90°. In a subtype II 2.5-mm fracture, isolated repair of the LUCL or pMCL is not capable of restoring rotation or angulation. For a subtype II 5-mm fracture, no combination of ligamentous repairs could restore rotation or angulation. This study suggests that LUCL repair alone is sufficient to restore kinematics for small subtype I fractures for an arc avoiding deep flexion; whereas nearly normal kinematics throughout the arc of motion can be achieved if the pMCL is also repaired. Larger anteromedial coronoid fractures should ideally have fragments fixed in addition to ligament repairs.
ISSN:1058-2746
1532-6500
DOI:10.1016/j.jse.2018.07.030