Loading…
Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene
We model the newly synthesized magic-angle-twisted bilayer graphene superconductor with two p_{x,y}-like Wannier orbitals on the superstructure honeycomb lattice, where the hopping integrals are constructed via the Slater-Koster formulism by symmetry analysis. The characteristics exhibited in this s...
Saved in:
Published in: | Physical review letters 2018-11, Vol.121 (21), p.217001-217001 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We model the newly synthesized magic-angle-twisted bilayer graphene superconductor with two p_{x,y}-like Wannier orbitals on the superstructure honeycomb lattice, where the hopping integrals are constructed via the Slater-Koster formulism by symmetry analysis. The characteristics exhibited in this simple model are well consistent with both the rigorous calculations and experiment observations. A van Hove singularity and Fermi-surface (FS) nesting are found in the doping levels relevant to the correlated insulator and unconventional superconductivity revealed experimentally, based on which we identify the two phases as weak-coupling FS instabilities. Then, with repulsive Hubbard interactions turned on, we performed random-phase-approximation based calculations to identify the electron instabilities. As a result, we find chiral d+id topological superconductivity bordering the correlated insulating state near half-filling, identified as noncoplanar chiral spin-density wave ordered state, featuring the quantum anomalous Hall effect. The phase diagram obtained in our approach is qualitatively consistent with experiments. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.217001 |