Loading…

Cellular immunity in the insect Galleria mellonella against insect non-parasitic nematodes

Immunity to microbial infections is well understood; however, information regarding the immunity to parasitic multicellular organisms remains lacking. To understand innate host cellular immunity to nematodes, we compared the cellular response of the greater wax moth (Galleria mellonella) larvae agai...

Full description

Saved in:
Bibliographic Details
Published in:Parasitology 2019-05, Vol.146 (6), p.708-715
Main Authors: Ono, Masaya, Yoshiga, Toyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immunity to microbial infections is well understood; however, information regarding the immunity to parasitic multicellular organisms remains lacking. To understand innate host cellular immunity to nematodes, we compared the cellular response of the greater wax moth (Galleria mellonella) larvae against the non-parasitic, bacterial-feeding nematode Caenorhabditis elegans and pathogenic nematode Heterorhabditis bacteriophora. When intact first-instar or dauer larvae of C. elegans were injected into a G. mellonella larva, most of the nematodes were alive and not confined by the surrounding reaction by insect haemocytes (encapsulation), similarly as the pathogenic nematode, whereas most of the heat-killed nematodes of both species were severely encapsulated by 24 h after inoculation. Other non-parasitic nematodes were also not encapsulated. Surprisingly, C. elegans injected into the insect haemocoel grew and propagated in the live insect, resulting in death of the host insect. Our results suggest that C. elegans has some basic mechanisms to evade immunity of G. mellonenlla and grow in the haemocoel.
ISSN:0031-1820
1469-8161
DOI:10.1017/S003118201800210X