Loading…

Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware

Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neural engineering 2019-04, Vol.16 (2), p.026014-026014
Main Authors: Behrenbeck, Jan, Tayeb, Zied, Bhiri, Cyrine, Richter, Christoph, Rhodes, Oliver, Kasabov, Nikola, Espinosa-Ramos, Josafath I, Furber, Steve, Cheng, Gordon, Conradt, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53
cites cdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53
container_end_page 026014
container_issue 2
container_start_page 026014
container_title Journal of neural engineering
container_volume 16
creator Behrenbeck, Jan
Tayeb, Zied
Bhiri, Cyrine
Richter, Christoph
Rhodes, Oliver
Kasabov, Nikola
Espinosa-Ramos, Josafath I
Furber, Steve
Cheng, Gordon
Conradt, Jörg
description Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.
doi_str_mv 10.1088/1741-2552/aafabc
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159984088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159984088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq0KVB7tvqsqO1gQuM7LybIa0YKEhgXt2rpxrgdPkzi1EyGQ-O84DcwKIVmyff19R_Jh7BuHcw5lecFFxuMkz5MLRI21-sQOd6O93bmAA3bk_RYg5aKCz-wghVwISOGQPa9a9N5oo3A0to-wbyJHG0dhGK5WR36YX-KRusE6bCNvNj22Ppq86TfRmqbVVNP_nhl96GJrnhZWWHeDWa_xL7mop8nZzrrh3qjoHl3zgI6-sH0dWPT1dT9mf35e_l5dxTe3v65XP25ilYlijLGsuM6gyUWuUkpAZUgi_L8WILRqFCBhwgmpqIUWosYSRFFWqRC5yFLK02N2unAHZ_9N5EfZGa-obbEnO3mZ8LyqyiwgQxSWqHLWe0daDs506B4lBzlLl7NVORuWi_RQ-f5Kn-qOml3hzXIInC0BYwe5tZObBX7EO3knvu1J8kImEpICeCaHRqcv4G6cQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159984088</pqid></control><display><type>article</type><title>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Behrenbeck, Jan ; Tayeb, Zied ; Bhiri, Cyrine ; Richter, Christoph ; Rhodes, Oliver ; Kasabov, Nikola ; Espinosa-Ramos, Josafath I ; Furber, Steve ; Cheng, Gordon ; Conradt, Jörg</creator><creatorcontrib>Behrenbeck, Jan ; Tayeb, Zied ; Bhiri, Cyrine ; Richter, Christoph ; Rhodes, Oliver ; Kasabov, Nikola ; Espinosa-Ramos, Josafath I ; Furber, Steve ; Cheng, Gordon ; Conradt, Jörg</creatorcontrib><description>Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/aafabc</identifier><identifier>PMID: 30577030</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Electroencephalography ; Electromyography ; Female ; Hand ; Hand Strength - physiology ; Humans ; Machine Learning ; Male ; Models, Neurological ; NeuCube ; Neural Networks, Computer ; Prostheses and Implants ; Prosthesis Design ; prosthetic hands ; spiking neural networks ; SpiNNaker neuromorphic platform ; surface EMG (sEMG) ; Young Adult</subject><ispartof>Journal of neural engineering, 2019-04, Vol.16 (2), p.026014-026014</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</citedby><cites>FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</cites><orcidid>0000-0002-6591-1118 ; 0000-0003-3257-0211 ; 0000-0003-0770-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30577030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrenbeck, Jan</creatorcontrib><creatorcontrib>Tayeb, Zied</creatorcontrib><creatorcontrib>Bhiri, Cyrine</creatorcontrib><creatorcontrib>Richter, Christoph</creatorcontrib><creatorcontrib>Rhodes, Oliver</creatorcontrib><creatorcontrib>Kasabov, Nikola</creatorcontrib><creatorcontrib>Espinosa-Ramos, Josafath I</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Cheng, Gordon</creatorcontrib><creatorcontrib>Conradt, Jörg</creatorcontrib><title>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.</description><subject>Algorithms</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Female</subject><subject>Hand</subject><subject>Hand Strength - physiology</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>NeuCube</subject><subject>Neural Networks, Computer</subject><subject>Prostheses and Implants</subject><subject>Prosthesis Design</subject><subject>prosthetic hands</subject><subject>spiking neural networks</subject><subject>SpiNNaker neuromorphic platform</subject><subject>surface EMG (sEMG)</subject><subject>Young Adult</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtP3DAURq0KVB7tvqsqO1gQuM7LybIa0YKEhgXt2rpxrgdPkzi1EyGQ-O84DcwKIVmyff19R_Jh7BuHcw5lecFFxuMkz5MLRI21-sQOd6O93bmAA3bk_RYg5aKCz-wghVwISOGQPa9a9N5oo3A0to-wbyJHG0dhGK5WR36YX-KRusE6bCNvNj22Ppq86TfRmqbVVNP_nhl96GJrnhZWWHeDWa_xL7mop8nZzrrh3qjoHl3zgI6-sH0dWPT1dT9mf35e_l5dxTe3v65XP25ilYlijLGsuM6gyUWuUkpAZUgi_L8WILRqFCBhwgmpqIUWosYSRFFWqRC5yFLK02N2unAHZ_9N5EfZGa-obbEnO3mZ8LyqyiwgQxSWqHLWe0daDs506B4lBzlLl7NVORuWi_RQ-f5Kn-qOml3hzXIInC0BYwe5tZObBX7EO3knvu1J8kImEpICeCaHRqcv4G6cQQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Behrenbeck, Jan</creator><creator>Tayeb, Zied</creator><creator>Bhiri, Cyrine</creator><creator>Richter, Christoph</creator><creator>Rhodes, Oliver</creator><creator>Kasabov, Nikola</creator><creator>Espinosa-Ramos, Josafath I</creator><creator>Furber, Steve</creator><creator>Cheng, Gordon</creator><creator>Conradt, Jörg</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6591-1118</orcidid><orcidid>https://orcid.org/0000-0003-3257-0211</orcidid><orcidid>https://orcid.org/0000-0003-0770-8717</orcidid></search><sort><creationdate>20190401</creationdate><title>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</title><author>Behrenbeck, Jan ; Tayeb, Zied ; Bhiri, Cyrine ; Richter, Christoph ; Rhodes, Oliver ; Kasabov, Nikola ; Espinosa-Ramos, Josafath I ; Furber, Steve ; Cheng, Gordon ; Conradt, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Female</topic><topic>Hand</topic><topic>Hand Strength - physiology</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>NeuCube</topic><topic>Neural Networks, Computer</topic><topic>Prostheses and Implants</topic><topic>Prosthesis Design</topic><topic>prosthetic hands</topic><topic>spiking neural networks</topic><topic>SpiNNaker neuromorphic platform</topic><topic>surface EMG (sEMG)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrenbeck, Jan</creatorcontrib><creatorcontrib>Tayeb, Zied</creatorcontrib><creatorcontrib>Bhiri, Cyrine</creatorcontrib><creatorcontrib>Richter, Christoph</creatorcontrib><creatorcontrib>Rhodes, Oliver</creatorcontrib><creatorcontrib>Kasabov, Nikola</creatorcontrib><creatorcontrib>Espinosa-Ramos, Josafath I</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Cheng, Gordon</creatorcontrib><creatorcontrib>Conradt, Jörg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrenbeck, Jan</au><au>Tayeb, Zied</au><au>Bhiri, Cyrine</au><au>Richter, Christoph</au><au>Rhodes, Oliver</au><au>Kasabov, Nikola</au><au>Espinosa-Ramos, Josafath I</au><au>Furber, Steve</au><au>Cheng, Gordon</au><au>Conradt, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>026014</spage><epage>026014</epage><pages>026014-026014</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30577030</pmid><doi>10.1088/1741-2552/aafabc</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6591-1118</orcidid><orcidid>https://orcid.org/0000-0003-3257-0211</orcidid><orcidid>https://orcid.org/0000-0003-0770-8717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2019-04, Vol.16 (2), p.026014-026014
issn 1741-2560
1741-2552
language eng
recordid cdi_proquest_miscellaneous_2159984088
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Algorithms
Electroencephalography
Electromyography
Female
Hand
Hand Strength - physiology
Humans
Machine Learning
Male
Models, Neurological
NeuCube
Neural Networks, Computer
Prostheses and Implants
Prosthesis Design
prosthetic hands
spiking neural networks
SpiNNaker neuromorphic platform
surface EMG (sEMG)
Young Adult
title Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20and%20regression%20of%20spatio-temporal%20signals%20using%20NeuCube%20and%20its%20realization%20on%20SpiNNaker%20neuromorphic%20hardware&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Behrenbeck,%20Jan&rft.date=2019-04-01&rft.volume=16&rft.issue=2&rft.spage=026014&rft.epage=026014&rft.pages=026014-026014&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/aafabc&rft_dat=%3Cproquest_iop_j%3E2159984088%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159984088&rft_id=info:pmid/30577030&rfr_iscdi=true