Loading…
Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware
Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power...
Saved in:
Published in: | Journal of neural engineering 2019-04, Vol.16 (2), p.026014-026014 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53 |
container_end_page | 026014 |
container_issue | 2 |
container_start_page | 026014 |
container_title | Journal of neural engineering |
container_volume | 16 |
creator | Behrenbeck, Jan Tayeb, Zied Bhiri, Cyrine Richter, Christoph Rhodes, Oliver Kasabov, Nikola Espinosa-Ramos, Josafath I Furber, Steve Cheng, Gordon Conradt, Jörg |
description | Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses. |
doi_str_mv | 10.1088/1741-2552/aafabc |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159984088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159984088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq0KVB7tvqsqO1gQuM7LybIa0YKEhgXt2rpxrgdPkzi1EyGQ-O84DcwKIVmyff19R_Jh7BuHcw5lecFFxuMkz5MLRI21-sQOd6O93bmAA3bk_RYg5aKCz-wghVwISOGQPa9a9N5oo3A0to-wbyJHG0dhGK5WR36YX-KRusE6bCNvNj22Ppq86TfRmqbVVNP_nhl96GJrnhZWWHeDWa_xL7mop8nZzrrh3qjoHl3zgI6-sH0dWPT1dT9mf35e_l5dxTe3v65XP25ilYlijLGsuM6gyUWuUkpAZUgi_L8WILRqFCBhwgmpqIUWosYSRFFWqRC5yFLK02N2unAHZ_9N5EfZGa-obbEnO3mZ8LyqyiwgQxSWqHLWe0daDs506B4lBzlLl7NVORuWi_RQ-f5Kn-qOml3hzXIInC0BYwe5tZObBX7EO3knvu1J8kImEpICeCaHRqcv4G6cQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159984088</pqid></control><display><type>article</type><title>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Behrenbeck, Jan ; Tayeb, Zied ; Bhiri, Cyrine ; Richter, Christoph ; Rhodes, Oliver ; Kasabov, Nikola ; Espinosa-Ramos, Josafath I ; Furber, Steve ; Cheng, Gordon ; Conradt, Jörg</creator><creatorcontrib>Behrenbeck, Jan ; Tayeb, Zied ; Bhiri, Cyrine ; Richter, Christoph ; Rhodes, Oliver ; Kasabov, Nikola ; Espinosa-Ramos, Josafath I ; Furber, Steve ; Cheng, Gordon ; Conradt, Jörg</creatorcontrib><description>Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/aafabc</identifier><identifier>PMID: 30577030</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Electroencephalography ; Electromyography ; Female ; Hand ; Hand Strength - physiology ; Humans ; Machine Learning ; Male ; Models, Neurological ; NeuCube ; Neural Networks, Computer ; Prostheses and Implants ; Prosthesis Design ; prosthetic hands ; spiking neural networks ; SpiNNaker neuromorphic platform ; surface EMG (sEMG) ; Young Adult</subject><ispartof>Journal of neural engineering, 2019-04, Vol.16 (2), p.026014-026014</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</citedby><cites>FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</cites><orcidid>0000-0002-6591-1118 ; 0000-0003-3257-0211 ; 0000-0003-0770-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30577030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrenbeck, Jan</creatorcontrib><creatorcontrib>Tayeb, Zied</creatorcontrib><creatorcontrib>Bhiri, Cyrine</creatorcontrib><creatorcontrib>Richter, Christoph</creatorcontrib><creatorcontrib>Rhodes, Oliver</creatorcontrib><creatorcontrib>Kasabov, Nikola</creatorcontrib><creatorcontrib>Espinosa-Ramos, Josafath I</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Cheng, Gordon</creatorcontrib><creatorcontrib>Conradt, Jörg</creatorcontrib><title>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.</description><subject>Algorithms</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Female</subject><subject>Hand</subject><subject>Hand Strength - physiology</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>NeuCube</subject><subject>Neural Networks, Computer</subject><subject>Prostheses and Implants</subject><subject>Prosthesis Design</subject><subject>prosthetic hands</subject><subject>spiking neural networks</subject><subject>SpiNNaker neuromorphic platform</subject><subject>surface EMG (sEMG)</subject><subject>Young Adult</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtP3DAURq0KVB7tvqsqO1gQuM7LybIa0YKEhgXt2rpxrgdPkzi1EyGQ-O84DcwKIVmyff19R_Jh7BuHcw5lecFFxuMkz5MLRI21-sQOd6O93bmAA3bk_RYg5aKCz-wghVwISOGQPa9a9N5oo3A0to-wbyJHG0dhGK5WR36YX-KRusE6bCNvNj22Ppq86TfRmqbVVNP_nhl96GJrnhZWWHeDWa_xL7mop8nZzrrh3qjoHl3zgI6-sH0dWPT1dT9mf35e_l5dxTe3v65XP25ilYlijLGsuM6gyUWuUkpAZUgi_L8WILRqFCBhwgmpqIUWosYSRFFWqRC5yFLK02N2unAHZ_9N5EfZGa-obbEnO3mZ8LyqyiwgQxSWqHLWe0daDs506B4lBzlLl7NVORuWi_RQ-f5Kn-qOml3hzXIInC0BYwe5tZObBX7EO3knvu1J8kImEpICeCaHRqcv4G6cQQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Behrenbeck, Jan</creator><creator>Tayeb, Zied</creator><creator>Bhiri, Cyrine</creator><creator>Richter, Christoph</creator><creator>Rhodes, Oliver</creator><creator>Kasabov, Nikola</creator><creator>Espinosa-Ramos, Josafath I</creator><creator>Furber, Steve</creator><creator>Cheng, Gordon</creator><creator>Conradt, Jörg</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6591-1118</orcidid><orcidid>https://orcid.org/0000-0003-3257-0211</orcidid><orcidid>https://orcid.org/0000-0003-0770-8717</orcidid></search><sort><creationdate>20190401</creationdate><title>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</title><author>Behrenbeck, Jan ; Tayeb, Zied ; Bhiri, Cyrine ; Richter, Christoph ; Rhodes, Oliver ; Kasabov, Nikola ; Espinosa-Ramos, Josafath I ; Furber, Steve ; Cheng, Gordon ; Conradt, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Female</topic><topic>Hand</topic><topic>Hand Strength - physiology</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>NeuCube</topic><topic>Neural Networks, Computer</topic><topic>Prostheses and Implants</topic><topic>Prosthesis Design</topic><topic>prosthetic hands</topic><topic>spiking neural networks</topic><topic>SpiNNaker neuromorphic platform</topic><topic>surface EMG (sEMG)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrenbeck, Jan</creatorcontrib><creatorcontrib>Tayeb, Zied</creatorcontrib><creatorcontrib>Bhiri, Cyrine</creatorcontrib><creatorcontrib>Richter, Christoph</creatorcontrib><creatorcontrib>Rhodes, Oliver</creatorcontrib><creatorcontrib>Kasabov, Nikola</creatorcontrib><creatorcontrib>Espinosa-Ramos, Josafath I</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Cheng, Gordon</creatorcontrib><creatorcontrib>Conradt, Jörg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrenbeck, Jan</au><au>Tayeb, Zied</au><au>Bhiri, Cyrine</au><au>Richter, Christoph</au><au>Rhodes, Oliver</au><au>Kasabov, Nikola</au><au>Espinosa-Ramos, Josafath I</au><au>Furber, Steve</au><au>Cheng, Gordon</au><au>Conradt, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>026014</spage><epage>026014</epage><pages>026014-026014</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. Approach. The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. Main results. Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. Significance. This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30577030</pmid><doi>10.1088/1741-2552/aafabc</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6591-1118</orcidid><orcidid>https://orcid.org/0000-0003-3257-0211</orcidid><orcidid>https://orcid.org/0000-0003-0770-8717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2019-04, Vol.16 (2), p.026014-026014 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_proquest_miscellaneous_2159984088 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algorithms Electroencephalography Electromyography Female Hand Hand Strength - physiology Humans Machine Learning Male Models, Neurological NeuCube Neural Networks, Computer Prostheses and Implants Prosthesis Design prosthetic hands spiking neural networks SpiNNaker neuromorphic platform surface EMG (sEMG) Young Adult |
title | Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20and%20regression%20of%20spatio-temporal%20signals%20using%20NeuCube%20and%20its%20realization%20on%20SpiNNaker%20neuromorphic%20hardware&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Behrenbeck,%20Jan&rft.date=2019-04-01&rft.volume=16&rft.issue=2&rft.spage=026014&rft.epage=026014&rft.pages=026014-026014&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/aafabc&rft_dat=%3Cproquest_iop_j%3E2159984088%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-a891f40d575c3e20c4ae7088b707fcdc0aea21eae6b7f77ba8076893775743e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159984088&rft_id=info:pmid/30577030&rfr_iscdi=true |