Loading…
Gold nanoclusters for Parkinson's disease treatment
Drug discovery for Parkinson's disease (PD) is challenging. Here we report that gold nanoclusters (AuNCs) can serve as a novel candidate for the design of anti-PD drugs. With N-isobutyryl-l-cysteine (L-NIBC) protected AuNCs as an example, we show that AuNCs effectively prevent α-Synuclein (α-Sy...
Saved in:
Published in: | Biomaterials 2019-02, Vol.194, p.36-46 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drug discovery for Parkinson's disease (PD) is challenging. Here we report that gold nanoclusters (AuNCs) can serve as a novel candidate for the design of anti-PD drugs. With N-isobutyryl-l-cysteine (L-NIBC) protected AuNCs as an example, we show that AuNCs effectively prevent α-Synuclein (α-Syn) fibrillation in in vitro experiments. Cell experiments demonstrate good neuroprotective effects in PD cell models. More significantly, experiments of mouse PD model further show that AuNCs largely ameliorate the behavioral disorders of sick mice. In addition, immunohistochemical and western blot (WB) analyses indicate that AuNCs can significantly reverse dopaminergic (DA) neuron loss in substantia nigra and striatum of sick mice. This study opens up a novel avenue to develop anti-PD drugs and points a new direction for AuNCs in medicinal applications.
Gold nanoclusters (AuNCs) prevent α-Synuclein aggregation and fibrillation and improve cell viability in MPP+ lesioned cell PD model. MPTP induced Mouse PD model experiment shows that AuNCs protect the dopaminergic neurons in substantia nigra and striatum, and ameliorate behavioral disorders of sick mice. This opens a novel avenue to develop anti-PD drugs and points a new direction for AuNCs in medicinal applications. [Display omitted] |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2018.12.013 |