Loading…

Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective

Attractive interest on double emulsions comes from their unique morphology, making them general multifunctional carriers able to encapsulate different hydrophilic and lipophilic molecules in the same particle. Over the past century, two different types of methods were followed to prepare double emul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release 2019-02, Vol.295, p.31-49
Main Authors: Ding, Shukai, Serra, Christophe A., Vandamme, Thierry F., Yu, Wei, Anton, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Attractive interest on double emulsions comes from their unique morphology, making them general multifunctional carriers able to encapsulate different hydrophilic and lipophilic molecules in the same particle. Over the past century, two different types of methods were followed to prepare double emulsions for pharmaceutics applications, so-called “one-step” and “two-step” processes. The two-step approach, consisting in two different emulsifications successively performed, allows the optimal and more efficient formulations due to simplicity of principle and controllability of the process. In this review, focused on the formulation of double emulsions by two-step process, we recount the historical development of this approach, along with the state-of-the-art, including a discussion on the role of the formulation parameters, surfactants, amphiphilic polymers, interface stabilization, volume fraction, and so forth, on the final formulation stability, morphology and properties as drug delivery system. Discussion was also extended to polymeric microparticles and nanoparticles made by solvent diffusion, on the basis of double emulsions made by two-step process, along with literature review on the impact of different formulation and processing parameters. In addition, the properties of the polymers used in the microparticles matrix (molecular weight, chemical nature) potentially impacting on the ones of the microparticles formed (drug release kinetics, stability, morphology), were also discussed. Finally, the future trends in double emulsions application were addressed, emphasizing some new advances made in the emulsifications method as potentially able to open the range of applications, for example to nanoscale with spontaneous emulsification or low energy microfluidic emulsification. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2018.12.037