Loading…
Green synthesis of ultra-small VOx nanodots for acidic-activated HSP60 inhibition and therapeutic enhancement
Using metal oxide semiconductor nanomaterials for synergistic cancer treatment has recently attracted the attention of numerous researchers. Herein, oxygen-defective vanadium oxide nanodots (VOx NDs) with ultra-small size and great dispersibility were synthesized via a novel user-friendly method, an...
Saved in:
Published in: | Biomaterials 2019-02, Vol.194, p.94-104 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using metal oxide semiconductor nanomaterials for synergistic cancer treatment has recently attracted the attention of numerous researchers. Herein, oxygen-defective vanadium oxide nanodots (VOx NDs) with ultra-small size and great dispersibility were synthesized via a novel user-friendly method, and then doxorubicin was loaded onto the VOx NDs surfaces. The VOx NDs had great photothermal conversion efficiency and stability. Doxorubicin-loaded VOx NDs can simultaneously serve as therapeutic agent and tumor microenvironment-activable HSP60 inhibitor, resulting in improved efficacy of photothermal therapy and released active doxorubicin for chemotherapy. Finally, we show that synergistic treatment achieved significant therapeutic effects in mice. These results provided a promising strategy for developing novel methods of synthesizing metal oxide semiconductors for enhanced synergistic cancer treatment. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2018.12.022 |