Loading…
Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films
A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μm radius spot on t...
Saved in:
Published in: | Microscopy and microanalysis 2018-12, Vol.24 (6), p.647-656 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 656 |
container_issue | 6 |
container_start_page | 647 |
container_title | Microscopy and microanalysis |
container_volume | 24 |
creator | Wu, Yueying Liu, Chenze Moore, Thomas M. Magel, Gregory A. Garfinkel, David A. Camden, Jon P. Stanford, Michael G. Duscher, Gerd Rack, Philip D. |
description | A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μm radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag0.5Ni0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed. |
doi_str_mv | 10.1017/S1431927618015465 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2161065207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927618015465</cupid><sourcerecordid>2161065207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-d4b41c08340a6ef2f07dcdbc2ee9bd641e794ea1e48052dbd451b1326cecb9ec3</originalsourceid><addsrcrecordid>eNplkctu1DAUhiMEoqXwAGyQJTYsmtbHdm7sqnY6RZpCxQzryLHPTFwlcbCdDsOz8XB46FRIsLHP5Tv_sfUnyVugZ0ChOF-C4FCxIoeSQiby7FlyHEtZWgJkz__EkO77R8kr7-8ppZwW-cvkiNOsLCsQx8mv2Y-xs84MG3LX2mBDi66XHbmTod3KnScPRhIzkKUJE1lIj47coAx7PlYjTVZODr433hs7kFmHKrgY3BrlrFd2xI_kKyq380F2nfkZR-1wSuZOxvG5s9vQnsbNUZgscZTu0JeDJle4xfC06WJDz7LPJh5k1cb82nS9f528WMvO45vDfZJ8u56tLm_SxZf5p8uLRapYyUOqRSNA0ZILKnNcszUttNKNYohVo3MBWFQCJaAoacZ0o0UGDXCWK1RNhYqfJB8edUdnv0_oQx3_q7Dr5IB28jWDHGieMVpE9P0_6L2d3BBfVzNWlZTxipeRenegpqZHXY_O9NLt6idfIsAfASX7xhm9wb86QOu9-_V_7vPfKQmhRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298023938</pqid></control><display><type>article</type><title>Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films</title><source>Cambridge University Press</source><creator>Wu, Yueying ; Liu, Chenze ; Moore, Thomas M. ; Magel, Gregory A. ; Garfinkel, David A. ; Camden, Jon P. ; Stanford, Michael G. ; Duscher, Gerd ; Rack, Philip D.</creator><creatorcontrib>Wu, Yueying ; Liu, Chenze ; Moore, Thomas M. ; Magel, Gregory A. ; Garfinkel, David A. ; Camden, Jon P. ; Stanford, Michael G. ; Duscher, Gerd ; Rack, Philip D.</creatorcontrib><description>A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μm radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag0.5Ni0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927618015465</identifier><identifier>PMID: 30588914</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Continuous radiation ; Drying ; Experiments ; Fiber lasers ; Fiber optics ; Grain growth ; Laser beam heating ; Lasers ; Materials Science Applications ; Organic chemistry ; Phase separation ; Pulse duration ; Recrystallization ; Semiconductor lasers ; Software ; Thermal stability ; Thin films ; Transmission electron microscopy</subject><ispartof>Microscopy and microanalysis, 2018-12, Vol.24 (6), p.647-656</ispartof><rights>Microscopy Society of America 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1431927618015465/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30588914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yueying</creatorcontrib><creatorcontrib>Liu, Chenze</creatorcontrib><creatorcontrib>Moore, Thomas M.</creatorcontrib><creatorcontrib>Magel, Gregory A.</creatorcontrib><creatorcontrib>Garfinkel, David A.</creatorcontrib><creatorcontrib>Camden, Jon P.</creatorcontrib><creatorcontrib>Stanford, Michael G.</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Rack, Philip D.</creatorcontrib><title>Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μm radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag0.5Ni0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed.</description><subject>Continuous radiation</subject><subject>Drying</subject><subject>Experiments</subject><subject>Fiber lasers</subject><subject>Fiber optics</subject><subject>Grain growth</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Materials Science Applications</subject><subject>Organic chemistry</subject><subject>Phase separation</subject><subject>Pulse duration</subject><subject>Recrystallization</subject><subject>Semiconductor lasers</subject><subject>Software</subject><subject>Thermal stability</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkctu1DAUhiMEoqXwAGyQJTYsmtbHdm7sqnY6RZpCxQzryLHPTFwlcbCdDsOz8XB46FRIsLHP5Tv_sfUnyVugZ0ChOF-C4FCxIoeSQiby7FlyHEtZWgJkz__EkO77R8kr7-8ppZwW-cvkiNOsLCsQx8mv2Y-xs84MG3LX2mBDi66XHbmTod3KnScPRhIzkKUJE1lIj47coAx7PlYjTVZODr433hs7kFmHKrgY3BrlrFd2xI_kKyq380F2nfkZR-1wSuZOxvG5s9vQnsbNUZgscZTu0JeDJle4xfC06WJDz7LPJh5k1cb82nS9f528WMvO45vDfZJ8u56tLm_SxZf5p8uLRapYyUOqRSNA0ZILKnNcszUttNKNYohVo3MBWFQCJaAoacZ0o0UGDXCWK1RNhYqfJB8edUdnv0_oQx3_q7Dr5IB28jWDHGieMVpE9P0_6L2d3BBfVzNWlZTxipeRenegpqZHXY_O9NLt6idfIsAfASX7xhm9wb86QOu9-_V_7vPfKQmhRA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Wu, Yueying</creator><creator>Liu, Chenze</creator><creator>Moore, Thomas M.</creator><creator>Magel, Gregory A.</creator><creator>Garfinkel, David A.</creator><creator>Camden, Jon P.</creator><creator>Stanford, Michael G.</creator><creator>Duscher, Gerd</creator><creator>Rack, Philip D.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>201812</creationdate><title>Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films</title><author>Wu, Yueying ; Liu, Chenze ; Moore, Thomas M. ; Magel, Gregory A. ; Garfinkel, David A. ; Camden, Jon P. ; Stanford, Michael G. ; Duscher, Gerd ; Rack, Philip D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-d4b41c08340a6ef2f07dcdbc2ee9bd641e794ea1e48052dbd451b1326cecb9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Continuous radiation</topic><topic>Drying</topic><topic>Experiments</topic><topic>Fiber lasers</topic><topic>Fiber optics</topic><topic>Grain growth</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Materials Science Applications</topic><topic>Organic chemistry</topic><topic>Phase separation</topic><topic>Pulse duration</topic><topic>Recrystallization</topic><topic>Semiconductor lasers</topic><topic>Software</topic><topic>Thermal stability</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yueying</creatorcontrib><creatorcontrib>Liu, Chenze</creatorcontrib><creatorcontrib>Moore, Thomas M.</creatorcontrib><creatorcontrib>Magel, Gregory A.</creatorcontrib><creatorcontrib>Garfinkel, David A.</creatorcontrib><creatorcontrib>Camden, Jon P.</creatorcontrib><creatorcontrib>Stanford, Michael G.</creatorcontrib><creatorcontrib>Duscher, Gerd</creatorcontrib><creatorcontrib>Rack, Philip D.</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yueying</au><au>Liu, Chenze</au><au>Moore, Thomas M.</au><au>Magel, Gregory A.</au><au>Garfinkel, David A.</au><au>Camden, Jon P.</au><au>Stanford, Michael G.</au><au>Duscher, Gerd</au><au>Rack, Philip D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2018-12</date><risdate>2018</risdate><volume>24</volume><issue>6</issue><spage>647</spage><epage>656</epage><pages>647-656</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μm radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag0.5Ni0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>30588914</pmid><doi>10.1017/S1431927618015465</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2018-12, Vol.24 (6), p.647-656 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_miscellaneous_2161065207 |
source | Cambridge University Press |
subjects | Continuous radiation Drying Experiments Fiber lasers Fiber optics Grain growth Laser beam heating Lasers Materials Science Applications Organic chemistry Phase separation Pulse duration Recrystallization Semiconductor lasers Software Thermal stability Thin films Transmission electron microscopy |
title | Exploring Photothermal Pathways via in Situ Laser Heating in the Transmission Electron Microscope: Recrystallization, Grain Growth, Phase Separation, and Dewetting in Ag0.5Ni0.5 Thin Films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Photothermal%20Pathways%20via%20in%20Situ%20Laser%20Heating%20in%20the%20Transmission%20Electron%20Microscope:%20Recrystallization,%20Grain%20Growth,%20Phase%20Separation,%20and%20Dewetting%20in%20Ag0.5Ni0.5%20Thin%20Films&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Wu,%20Yueying&rft.date=2018-12&rft.volume=24&rft.issue=6&rft.spage=647&rft.epage=656&rft.pages=647-656&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927618015465&rft_dat=%3Cproquest_pubme%3E2161065207%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c283t-d4b41c08340a6ef2f07dcdbc2ee9bd641e794ea1e48052dbd451b1326cecb9ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2298023938&rft_id=info:pmid/30588914&rft_cupid=10_1017_S1431927618015465&rfr_iscdi=true |