Loading…

Expression of a Functional IL-2 Receptor in Vascular Smooth Muscle Cells

Many nonlymphoid cell types express at least two, if not all three, subunits of the IL-2R; although, compared with lymphocytes, relatively little is known about how IL-2 affects the function of nonlymphoid cells. The limited information available suggests that IL-2 has a substantial impact on cells...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2019-02, Vol.202 (3), p.694-703
Main Authors: Arumugam, Prakash, Carroll, Katie L, Berceli, Scott A, Barnhill, Spencer, Wrenshall, Lucile E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many nonlymphoid cell types express at least two, if not all three, subunits of the IL-2R; although, compared with lymphocytes, relatively little is known about how IL-2 affects the function of nonlymphoid cells. The limited information available suggests that IL-2 has a substantial impact on cells such as gastrointestinal epithelial cells, endothelial cells, and fibroblasts. In a previous report from our laboratory, we noted that IL-2 and IL-2Rβ-deficient mice lose smooth muscle cells over time, eventually resulting in aneurysmal aortas and ectatic esophagi. This finding, combined with our work showing that IL-2 surrounds vascular smooth muscle cells by association with perlecan, led us to ask whether vascular smooth muscle cells express an IL-2R. Toward this end, we reported the expression of IL-2Rβ on human and murine vascular smooth muscle cells. We now report that vascular smooth muscle cells express all three subunits of the IL-2R, and that expression of IL-2Rα varies with vascular smooth muscle cell phenotype. Furthermore, we show that, through a functional IL-2R, IL-2 initiates signaling pathways and impacts vascular smooth muscle cell function. Finally, we demonstrate that IL-2 expression increases upon initiation of conditions that promote intimal hyperplasia, suggesting a mechanism by which the IL-2/IL-2R system may impact this widespread vascular pathology.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1701151