Loading…
Determination of the Ionization Time Using Attosecond Photoelectron Interferometry
Laser-induced electron tunneling ionization from atoms and molecules plays as the trigger for a broad class of interesting strong-field phenomena in attosecond community. Understanding the time of electron tunneling ionization is vital to achieving the ultimate accuracy in attosecond metrology. We p...
Saved in:
Published in: | Physical review letters 2018-12, Vol.121 (25), p.253203-253203, Article 253203 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laser-induced electron tunneling ionization from atoms and molecules plays as the trigger for a broad class of interesting strong-field phenomena in attosecond community. Understanding the time of electron tunneling ionization is vital to achieving the ultimate accuracy in attosecond metrology. We propose a novel attosecond photoelectron interferometer, which is based on the interference of the direct and near-forward rescattering electron wave packets, to determine the time information characterizing the tunneling process. Adding a weak perturbation in orthogonal to the strong fundamental field, the phases of the direct and the near-forward rescattering electron wave packets are modified, leading to the shift of the interferogram in the photoelectron momentum distributions. By analyzing the response of the interferogram to the perturbation, the real part of the ionization time, which denotes the instant when the electron exits the potential barrier, and the associated rescattering time are precisely retrieved. Moreover, the imaginary part of the ionization time, which has been interpreted as a quantity related to electron motion under the potential barrier, is also unambiguously determined. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.121.253203 |