Loading…
Light Bipolarons Stabilized by Peierls Electron-Phonon Coupling
It is widely accepted that phonon-mediated high-temperature superconductivity is impossible at ambient pressure, because of the very large effective masses of polarons or bipolarons at strong electron-phonon coupling. Here we challenge this belief by showing that strongly bound yet very light bipola...
Saved in:
Published in: | Physical review letters 2018-12, Vol.121 (24), p.247001-247001, Article 247001 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is widely accepted that phonon-mediated high-temperature superconductivity is impossible at ambient pressure, because of the very large effective masses of polarons or bipolarons at strong electron-phonon coupling. Here we challenge this belief by showing that strongly bound yet very light bipolarons appear for strong Peierls coupling. These bipolarons also exhibit many other unconventional properties; e.g., at strong coupling there are two low-energy bipolaron bands that are stable against strong Coulomb repulsion. Using numerical simulations and analytical arguments, we show that these properties result from the specific form of the phonon-mediated interaction, which is of "pair hopping" instead of regular density-density type. This unusual effective interaction is bound to have nontrivial consequences for the superconducting state expected to arise at finite carrier concentrations and should favor a large critical temperature. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.121.247001 |