Loading…

Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics

A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-12, Vol.10 (51), p.44897-44905
Main Authors: Navarro-Senent, Cristina, Fornell, Jordina, Isarain-Chávez, Eloy, Quintana, Alberto, Menéndez, Enric, Foerster, Michael, Aballe, Lucía, Weschke, Eugen, Nogués, Josep, Pellicer, Eva, Sort, Jordi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313
cites cdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313
container_end_page 44905
container_issue 51
container_start_page 44897
container_title ACS applied materials & interfaces
container_volume 10
creator Navarro-Senent, Cristina
Fornell, Jordina
Isarain-Chávez, Eloy
Quintana, Alberto
Menéndez, Enric
Foerster, Michael
Aballe, Lucía
Weschke, Eugen
Nogués, Josep
Pellicer, Eva
Sort, Jordi
description A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.
doi_str_mv 10.1021/acsami.8b17442
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179231415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179231415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBCIlsLKiDwipBTbcb5GVApUKjAAc-Q4z8WltYudIHXir2NI2o3pfd3d0x1C55SMKWH0Wkgv1nqcVzTjnB2gIS04j3KWsMN9z_kAnXi_JCSNGUmO0SAmCQsDHaLvuXALwI9iYaCxsALZOC3xVKnQeawNnv7tbA0b63UDNX4Sxm6ss63Hj1qGi_YfHt86_QUGV9ueGyb80jolJODJe3iizQILU-9eRTNrtPSn6EiJlYezvo7Q2930dfIQzZ_vZ5ObeSTijDRRXMSQ87TiWZVymclUAkBdJ5IEU6SitQLBhJJSZgkwWoNIqjwtlFBJEbg0HqHLTnfj7GcLvinX2ktYrYSB4KRkNCtYTDlNAnTcQYM37x2ocuP0WrhtSUn5G3rZhV72oQfCRa_dVmuo9_BdygFw1QECsVza1plg9T-1HzRdj0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179231415</pqid></control><display><type>article</type><title>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Navarro-Senent, Cristina ; Fornell, Jordina ; Isarain-Chávez, Eloy ; Quintana, Alberto ; Menéndez, Enric ; Foerster, Michael ; Aballe, Lucía ; Weschke, Eugen ; Nogués, Josep ; Pellicer, Eva ; Sort, Jordi</creator><creatorcontrib>Navarro-Senent, Cristina ; Fornell, Jordina ; Isarain-Chávez, Eloy ; Quintana, Alberto ; Menéndez, Enric ; Foerster, Michael ; Aballe, Lucía ; Weschke, Eugen ; Nogués, Josep ; Pellicer, Eva ; Sort, Jordi</creatorcontrib><description>A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b17442</identifier><identifier>PMID: 30520631</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-12, Vol.10 (51), p.44897-44905</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</citedby><cites>FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</cites><orcidid>0000-0002-8901-0998 ; 0000-0002-9813-735X ; 0000-0003-1213-3639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30520631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro-Senent, Cristina</creatorcontrib><creatorcontrib>Fornell, Jordina</creatorcontrib><creatorcontrib>Isarain-Chávez, Eloy</creatorcontrib><creatorcontrib>Quintana, Alberto</creatorcontrib><creatorcontrib>Menéndez, Enric</creatorcontrib><creatorcontrib>Foerster, Michael</creatorcontrib><creatorcontrib>Aballe, Lucía</creatorcontrib><creatorcontrib>Weschke, Eugen</creatorcontrib><creatorcontrib>Nogués, Josep</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><title>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAUtBCIlsLKiDwipBTbcb5GVApUKjAAc-Q4z8WltYudIHXir2NI2o3pfd3d0x1C55SMKWH0Wkgv1nqcVzTjnB2gIS04j3KWsMN9z_kAnXi_JCSNGUmO0SAmCQsDHaLvuXALwI9iYaCxsALZOC3xVKnQeawNnv7tbA0b63UDNX4Sxm6ss63Hj1qGi_YfHt86_QUGV9ueGyb80jolJODJe3iizQILU-9eRTNrtPSn6EiJlYezvo7Q2930dfIQzZ_vZ5ObeSTijDRRXMSQ87TiWZVymclUAkBdJ5IEU6SitQLBhJJSZgkwWoNIqjwtlFBJEbg0HqHLTnfj7GcLvinX2ktYrYSB4KRkNCtYTDlNAnTcQYM37x2ocuP0WrhtSUn5G3rZhV72oQfCRa_dVmuo9_BdygFw1QECsVza1plg9T-1HzRdj0g</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Navarro-Senent, Cristina</creator><creator>Fornell, Jordina</creator><creator>Isarain-Chávez, Eloy</creator><creator>Quintana, Alberto</creator><creator>Menéndez, Enric</creator><creator>Foerster, Michael</creator><creator>Aballe, Lucía</creator><creator>Weschke, Eugen</creator><creator>Nogués, Josep</creator><creator>Pellicer, Eva</creator><creator>Sort, Jordi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0002-9813-735X</orcidid><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid></search><sort><creationdate>20181226</creationdate><title>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</title><author>Navarro-Senent, Cristina ; Fornell, Jordina ; Isarain-Chávez, Eloy ; Quintana, Alberto ; Menéndez, Enric ; Foerster, Michael ; Aballe, Lucía ; Weschke, Eugen ; Nogués, Josep ; Pellicer, Eva ; Sort, Jordi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro-Senent, Cristina</creatorcontrib><creatorcontrib>Fornell, Jordina</creatorcontrib><creatorcontrib>Isarain-Chávez, Eloy</creatorcontrib><creatorcontrib>Quintana, Alberto</creatorcontrib><creatorcontrib>Menéndez, Enric</creatorcontrib><creatorcontrib>Foerster, Michael</creatorcontrib><creatorcontrib>Aballe, Lucía</creatorcontrib><creatorcontrib>Weschke, Eugen</creatorcontrib><creatorcontrib>Nogués, Josep</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro-Senent, Cristina</au><au>Fornell, Jordina</au><au>Isarain-Chávez, Eloy</au><au>Quintana, Alberto</au><au>Menéndez, Enric</au><au>Foerster, Michael</au><au>Aballe, Lucía</au><au>Weschke, Eugen</au><au>Nogués, Josep</au><au>Pellicer, Eva</au><au>Sort, Jordi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-12-26</date><risdate>2018</risdate><volume>10</volume><issue>51</issue><spage>44897</spage><epage>44905</epage><pages>44897-44905</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30520631</pmid><doi>10.1021/acsami.8b17442</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0002-9813-735X</orcidid><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-12, Vol.10 (51), p.44897-44905
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2179231415
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Magnetoelectric%20Effects%20in%20Electrodeposited%20Nanoporous%20Microdisks%20Driven%20by%20Effective%20Surface%20Charging%20and%20Magneto-Ionics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Navarro-Senent,%20Cristina&rft.date=2018-12-26&rft.volume=10&rft.issue=51&rft.spage=44897&rft.epage=44905&rft.pages=44897-44905&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b17442&rft_dat=%3Cproquest_cross%3E2179231415%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179231415&rft_id=info:pmid/30520631&rfr_iscdi=true