Loading…
Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics
A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are...
Saved in:
Published in: | ACS applied materials & interfaces 2018-12, Vol.10 (51), p.44897-44905 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313 |
---|---|
cites | cdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313 |
container_end_page | 44905 |
container_issue | 51 |
container_start_page | 44897 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Navarro-Senent, Cristina Fornell, Jordina Isarain-Chávez, Eloy Quintana, Alberto Menéndez, Enric Foerster, Michael Aballe, Lucía Weschke, Eugen Nogués, Josep Pellicer, Eva Sort, Jordi |
description | A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices. |
doi_str_mv | 10.1021/acsami.8b17442 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179231415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179231415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBCIlsLKiDwipBTbcb5GVApUKjAAc-Q4z8WltYudIHXir2NI2o3pfd3d0x1C55SMKWH0Wkgv1nqcVzTjnB2gIS04j3KWsMN9z_kAnXi_JCSNGUmO0SAmCQsDHaLvuXALwI9iYaCxsALZOC3xVKnQeawNnv7tbA0b63UDNX4Sxm6ss63Hj1qGi_YfHt86_QUGV9ueGyb80jolJODJe3iizQILU-9eRTNrtPSn6EiJlYezvo7Q2930dfIQzZ_vZ5ObeSTijDRRXMSQ87TiWZVymclUAkBdJ5IEU6SitQLBhJJSZgkwWoNIqjwtlFBJEbg0HqHLTnfj7GcLvinX2ktYrYSB4KRkNCtYTDlNAnTcQYM37x2ocuP0WrhtSUn5G3rZhV72oQfCRa_dVmuo9_BdygFw1QECsVza1plg9T-1HzRdj0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179231415</pqid></control><display><type>article</type><title>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Navarro-Senent, Cristina ; Fornell, Jordina ; Isarain-Chávez, Eloy ; Quintana, Alberto ; Menéndez, Enric ; Foerster, Michael ; Aballe, Lucía ; Weschke, Eugen ; Nogués, Josep ; Pellicer, Eva ; Sort, Jordi</creator><creatorcontrib>Navarro-Senent, Cristina ; Fornell, Jordina ; Isarain-Chávez, Eloy ; Quintana, Alberto ; Menéndez, Enric ; Foerster, Michael ; Aballe, Lucía ; Weschke, Eugen ; Nogués, Josep ; Pellicer, Eva ; Sort, Jordi</creatorcontrib><description>A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b17442</identifier><identifier>PMID: 30520631</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-12, Vol.10 (51), p.44897-44905</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</citedby><cites>FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</cites><orcidid>0000-0002-8901-0998 ; 0000-0002-9813-735X ; 0000-0003-1213-3639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30520631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro-Senent, Cristina</creatorcontrib><creatorcontrib>Fornell, Jordina</creatorcontrib><creatorcontrib>Isarain-Chávez, Eloy</creatorcontrib><creatorcontrib>Quintana, Alberto</creatorcontrib><creatorcontrib>Menéndez, Enric</creatorcontrib><creatorcontrib>Foerster, Michael</creatorcontrib><creatorcontrib>Aballe, Lucía</creatorcontrib><creatorcontrib>Weschke, Eugen</creatorcontrib><creatorcontrib>Nogués, Josep</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><title>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAUtBCIlsLKiDwipBTbcb5GVApUKjAAc-Q4z8WltYudIHXir2NI2o3pfd3d0x1C55SMKWH0Wkgv1nqcVzTjnB2gIS04j3KWsMN9z_kAnXi_JCSNGUmO0SAmCQsDHaLvuXALwI9iYaCxsALZOC3xVKnQeawNnv7tbA0b63UDNX4Sxm6ss63Hj1qGi_YfHt86_QUGV9ueGyb80jolJODJe3iizQILU-9eRTNrtPSn6EiJlYezvo7Q2930dfIQzZ_vZ5ObeSTijDRRXMSQ87TiWZVymclUAkBdJ5IEU6SitQLBhJJSZgkwWoNIqjwtlFBJEbg0HqHLTnfj7GcLvinX2ktYrYSB4KRkNCtYTDlNAnTcQYM37x2ocuP0WrhtSUn5G3rZhV72oQfCRa_dVmuo9_BdygFw1QECsVza1plg9T-1HzRdj0g</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Navarro-Senent, Cristina</creator><creator>Fornell, Jordina</creator><creator>Isarain-Chávez, Eloy</creator><creator>Quintana, Alberto</creator><creator>Menéndez, Enric</creator><creator>Foerster, Michael</creator><creator>Aballe, Lucía</creator><creator>Weschke, Eugen</creator><creator>Nogués, Josep</creator><creator>Pellicer, Eva</creator><creator>Sort, Jordi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0002-9813-735X</orcidid><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid></search><sort><creationdate>20181226</creationdate><title>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</title><author>Navarro-Senent, Cristina ; Fornell, Jordina ; Isarain-Chávez, Eloy ; Quintana, Alberto ; Menéndez, Enric ; Foerster, Michael ; Aballe, Lucía ; Weschke, Eugen ; Nogués, Josep ; Pellicer, Eva ; Sort, Jordi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro-Senent, Cristina</creatorcontrib><creatorcontrib>Fornell, Jordina</creatorcontrib><creatorcontrib>Isarain-Chávez, Eloy</creatorcontrib><creatorcontrib>Quintana, Alberto</creatorcontrib><creatorcontrib>Menéndez, Enric</creatorcontrib><creatorcontrib>Foerster, Michael</creatorcontrib><creatorcontrib>Aballe, Lucía</creatorcontrib><creatorcontrib>Weschke, Eugen</creatorcontrib><creatorcontrib>Nogués, Josep</creatorcontrib><creatorcontrib>Pellicer, Eva</creatorcontrib><creatorcontrib>Sort, Jordi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro-Senent, Cristina</au><au>Fornell, Jordina</au><au>Isarain-Chávez, Eloy</au><au>Quintana, Alberto</au><au>Menéndez, Enric</au><au>Foerster, Michael</au><au>Aballe, Lucía</au><au>Weschke, Eugen</au><au>Nogués, Josep</au><au>Pellicer, Eva</au><au>Sort, Jordi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-12-26</date><risdate>2018</risdate><volume>10</volume><issue>51</issue><spage>44897</spage><epage>44905</epage><pages>44897-44905</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co–Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2– migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned “nano-in-micro” magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30520631</pmid><doi>10.1021/acsami.8b17442</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8901-0998</orcidid><orcidid>https://orcid.org/0000-0002-9813-735X</orcidid><orcidid>https://orcid.org/0000-0003-1213-3639</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-12, Vol.10 (51), p.44897-44905 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179231415 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Magnetoelectric%20Effects%20in%20Electrodeposited%20Nanoporous%20Microdisks%20Driven%20by%20Effective%20Surface%20Charging%20and%20Magneto-Ionics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Navarro-Senent,%20Cristina&rft.date=2018-12-26&rft.volume=10&rft.issue=51&rft.spage=44897&rft.epage=44905&rft.pages=44897-44905&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b17442&rft_dat=%3Cproquest_cross%3E2179231415%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a370t-393e846b47b64c7c6ceeedd5c00060b1dfea2afccc75e21dea5b869faf5939313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179231415&rft_id=info:pmid/30520631&rfr_iscdi=true |