Loading…

Inkjet Printing of Reactive Silver Ink on Textiles

Inkjet printing of functional inks on textiles to embed passive electronics devices and sensors is a novel approach in the space of wearable electronic textiles. However, achieving functionality such as conductivity by inkjet printing on textiles is challenged by the porosity and surface roughness o...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-02, Vol.11 (6), p.6208-6216
Main Authors: Shahariar, Hasan, Kim, Inhwan, Soewardiman, Henry, Jur, Jesse S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inkjet printing of functional inks on textiles to embed passive electronics devices and sensors is a novel approach in the space of wearable electronic textiles. However, achieving functionality such as conductivity by inkjet printing on textiles is challenged by the porosity and surface roughness of textiles. Nanoparticle-based conductive inks frequently cause blockage/clogging of inkjet printer nozzles, making it a less than ideal method for applying these functional materials. It is also very challenging to create a conformal conductive coating and achieve electrically conductive percolation with the inkjet printing of metal nanoparticle inks on rough and porous textile and paper substrates. Herein, a novel reliable and conformal inkjet printing process is demonstrated for printing particle-free reactive silver ink on uncoated polyester textile knit, woven, and nonwoven fabrics. The particle-free functional ink can conformally coat individual fibers to create a conductive network within the textile structure without changing the feel, texture, durability, and mechanical behavior of the textile. It was found that the conductivity and the resolution of the inkjet-printed tracks are directly related with the packing and the tightness of fabric structures and fiber sizes of the fabrics. It is noteworthy that the electrical conductivity of the inkjet-printed conductive coating on pristine polyethylene terephthalate fibers is improved by an order of magnitude by in situ heat-curing of the textile surface during printing as the in situ heat-curing process minimizes the wicking of the ink into the textile structures. A minimum sheet resistance of 0.2 ± 0.025 and 0.9 ± 0.02 Ω/□ on polyester woven and polyester knit fabrics is achieved, respectively. These findings aim to advance E-textile product design through integration of inkjet printing as a low-cost, scalable, and automated manufacturing process.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b18231