Loading…

Modification of GLEAMS for modeling movement of organic contaminants from land-applied biosolids

Municipal biosolids are commonly applied to agricultural lands as fertilizer, but this also poses potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. In the present study, an existing model, Groundwater Loading Effects of Agricultural...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental management 2019-03, Vol.234, p.484-493
Main Authors: Giudice, Ben D., Young, Thomas M., Bibb, Jacob P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Municipal biosolids are commonly applied to agricultural lands as fertilizer, but this also poses potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. In the present study, an existing model, Groundwater Loading Effects of Agricultural Management Systems (GLEAMS), is modified to predict the fate and transport of organic contaminants from land-applied biosolids, primarily via addition of a labile biosolids organic carbon phase distinct from soil organic carbon. While capable of simulating contaminant transport in runoff and via percolation, only the runoff portion of the model was able to be calibrated using existing experimental data, and showed good agreement with field runoff data for acetaminophen, ibuprofen, triclosan, triclocarban, and estrone, but substantially under-predicted concentrations for carbamazepine, androstenedione, and progesterone. The model is applied to various scenarios using varied chemical properties, application date in the arid west, and application method (i.e., surface spreading vs. incorporation). Chemicals with longer half-lives and lower KOCs exhibited higher losses in runoff than chemicals with shorter half-lives and higher KOCs. For short half-life chemicals (i.e., ≤100 days), application at the beginning of the dry season resulted in the lowest losses. However, for long half-life chemicals (∼1000 days) with high KOC (10,000–100,000), application during the rainy season resulted in the lowest losses, because this caused organic carbon to be high during the period of highest runoff. While further work is necessary to calibrate the percolation and subsurface transport portion, the model can help predict environmental risk from land-application of biosolids, highlight gaps in our knowledge about how chemicals are mobilized and transported from biosolids, and help identify management practices that result in minimal impacts to water quality. •A model is developed to predict movement of chemicals from land-applied biosolids.•The model was calibrated using results for runoff from three independent studies.•Model application examined sensitivity of results to chemical and biosolids inputs.•The model provides a tool for biosolids managers to evaluate environmental risk.•The model can help make management decision to limit environmental risk.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2019.01.011