Loading…
Influence of weak groups on polyelectrolyte mobilities
The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectr...
Saved in:
Published in: | Electrophoresis 2019-03, Vol.40 (5), p.799-809 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53 |
container_end_page | 809 |
container_issue | 5 |
container_start_page | 799 |
container_title | Electrophoresis |
container_volume | 40 |
creator | Sean, David Landsgesell, Jonas Holm, Christian |
description | The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge. |
doi_str_mv | 10.1002/elps.201800346 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179363765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187367312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgitbq1aMsePGydZLZfOxRxC8oKKjnJd3Oymq6WZMu0n9vSmsPXjxlAk_eCS9jZxwmHEBckevjRAA3AFioPTbiUohcKIP7bARcYw4G5RE7jvEDAIqyKA7ZEYIqZLqNmHrsGjdQV1Pmm-yb7Gf2HvzQx8x3We_dihzVy5CGJWULP2tdu2wpnrCDxrpIp9tzzN7ubl9vHvLp0_3jzfU0r1GZMidTmkaAqLnlQiJKaUkgGK2LudRck0Y1A2y0tWKOUhgwtTVKay60kiRxzC43uX3wXwPFZbVoY03O2Y78ECvBdYkKE0704g_98EPo0u-SMmmRRi6SmmxUHXyMgZqqD-3ChlXFoVo3Wq0brXaNpgfn29hhtqD5jv9WmECxAd-to9U_cdXt9PlFGVniDxFNfs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187367312</pqid></control><display><type>article</type><title>Influence of weak groups on polyelectrolyte mobilities</title><source>Wiley</source><creator>Sean, David ; Landsgesell, Jonas ; Holm, Christian</creator><creatorcontrib>Sean, David ; Landsgesell, Jonas ; Holm, Christian</creatorcontrib><description>The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201800346</identifier><identifier>PMID: 30645004</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Charging ; Computational modeling ; Configurations ; Crosslinking ; Electric potential ; Electrophoresis ; Electrophoretic mobility ; Inhomogeneity ; Ionization ; Lattice‐Boltzmann ; Localization ; Models, Chemical ; Molecular dynamics ; Molecular Dynamics Simulation ; Monomers ; Monte Carlo Method ; Polyelectrolytes ; Polyelectrolytes - chemistry ; Reaction ensemble ; Weak polyelectrolytes</subject><ispartof>Electrophoresis, 2019-03, Vol.40 (5), p.799-809</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</citedby><cites>FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</cites><orcidid>0000-0002-9264-2267 ; 0000-0002-9315-8522 ; 0000-0003-2739-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30645004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sean, David</creatorcontrib><creatorcontrib>Landsgesell, Jonas</creatorcontrib><creatorcontrib>Holm, Christian</creatorcontrib><title>Influence of weak groups on polyelectrolyte mobilities</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.</description><subject>Annealing</subject><subject>Charging</subject><subject>Computational modeling</subject><subject>Configurations</subject><subject>Crosslinking</subject><subject>Electric potential</subject><subject>Electrophoresis</subject><subject>Electrophoretic mobility</subject><subject>Inhomogeneity</subject><subject>Ionization</subject><subject>Lattice‐Boltzmann</subject><subject>Localization</subject><subject>Models, Chemical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monomers</subject><subject>Monte Carlo Method</subject><subject>Polyelectrolytes</subject><subject>Polyelectrolytes - chemistry</subject><subject>Reaction ensemble</subject><subject>Weak polyelectrolytes</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgitbq1aMsePGydZLZfOxRxC8oKKjnJd3Oymq6WZMu0n9vSmsPXjxlAk_eCS9jZxwmHEBckevjRAA3AFioPTbiUohcKIP7bARcYw4G5RE7jvEDAIqyKA7ZEYIqZLqNmHrsGjdQV1Pmm-yb7Gf2HvzQx8x3We_dihzVy5CGJWULP2tdu2wpnrCDxrpIp9tzzN7ubl9vHvLp0_3jzfU0r1GZMidTmkaAqLnlQiJKaUkgGK2LudRck0Y1A2y0tWKOUhgwtTVKay60kiRxzC43uX3wXwPFZbVoY03O2Y78ECvBdYkKE0704g_98EPo0u-SMmmRRi6SmmxUHXyMgZqqD-3ChlXFoVo3Wq0brXaNpgfn29hhtqD5jv9WmECxAd-to9U_cdXt9PlFGVniDxFNfs4</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Sean, David</creator><creator>Landsgesell, Jonas</creator><creator>Holm, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9264-2267</orcidid><orcidid>https://orcid.org/0000-0002-9315-8522</orcidid><orcidid>https://orcid.org/0000-0003-2739-310X</orcidid></search><sort><creationdate>201903</creationdate><title>Influence of weak groups on polyelectrolyte mobilities</title><author>Sean, David ; Landsgesell, Jonas ; Holm, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Charging</topic><topic>Computational modeling</topic><topic>Configurations</topic><topic>Crosslinking</topic><topic>Electric potential</topic><topic>Electrophoresis</topic><topic>Electrophoretic mobility</topic><topic>Inhomogeneity</topic><topic>Ionization</topic><topic>Lattice‐Boltzmann</topic><topic>Localization</topic><topic>Models, Chemical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monomers</topic><topic>Monte Carlo Method</topic><topic>Polyelectrolytes</topic><topic>Polyelectrolytes - chemistry</topic><topic>Reaction ensemble</topic><topic>Weak polyelectrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sean, David</creatorcontrib><creatorcontrib>Landsgesell, Jonas</creatorcontrib><creatorcontrib>Holm, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sean, David</au><au>Landsgesell, Jonas</au><au>Holm, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of weak groups on polyelectrolyte mobilities</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2019-03</date><risdate>2019</risdate><volume>40</volume><issue>5</issue><spage>799</spage><epage>809</epage><pages>799-809</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30645004</pmid><doi>10.1002/elps.201800346</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9264-2267</orcidid><orcidid>https://orcid.org/0000-0002-9315-8522</orcidid><orcidid>https://orcid.org/0000-0003-2739-310X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2019-03, Vol.40 (5), p.799-809 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179363765 |
source | Wiley |
subjects | Annealing Charging Computational modeling Configurations Crosslinking Electric potential Electrophoresis Electrophoretic mobility Inhomogeneity Ionization Lattice‐Boltzmann Localization Models, Chemical Molecular dynamics Molecular Dynamics Simulation Monomers Monte Carlo Method Polyelectrolytes Polyelectrolytes - chemistry Reaction ensemble Weak polyelectrolytes |
title | Influence of weak groups on polyelectrolyte mobilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20weak%20groups%20on%20polyelectrolyte%20mobilities&rft.jtitle=Electrophoresis&rft.au=Sean,%20David&rft.date=2019-03&rft.volume=40&rft.issue=5&rft.spage=799&rft.epage=809&rft.pages=799-809&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201800346&rft_dat=%3Cproquest_cross%3E2187367312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187367312&rft_id=info:pmid/30645004&rfr_iscdi=true |