Loading…

Influence of weak groups on polyelectrolyte mobilities

The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectr...

Full description

Saved in:
Bibliographic Details
Published in:Electrophoresis 2019-03, Vol.40 (5), p.799-809
Main Authors: Sean, David, Landsgesell, Jonas, Holm, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53
cites cdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53
container_end_page 809
container_issue 5
container_start_page 799
container_title Electrophoresis
container_volume 40
creator Sean, David
Landsgesell, Jonas
Holm, Christian
description The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.
doi_str_mv 10.1002/elps.201800346
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179363765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187367312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgitbq1aMsePGydZLZfOxRxC8oKKjnJd3Oymq6WZMu0n9vSmsPXjxlAk_eCS9jZxwmHEBckevjRAA3AFioPTbiUohcKIP7bARcYw4G5RE7jvEDAIqyKA7ZEYIqZLqNmHrsGjdQV1Pmm-yb7Gf2HvzQx8x3We_dihzVy5CGJWULP2tdu2wpnrCDxrpIp9tzzN7ubl9vHvLp0_3jzfU0r1GZMidTmkaAqLnlQiJKaUkgGK2LudRck0Y1A2y0tWKOUhgwtTVKay60kiRxzC43uX3wXwPFZbVoY03O2Y78ECvBdYkKE0704g_98EPo0u-SMmmRRi6SmmxUHXyMgZqqD-3ChlXFoVo3Wq0brXaNpgfn29hhtqD5jv9WmECxAd-to9U_cdXt9PlFGVniDxFNfs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187367312</pqid></control><display><type>article</type><title>Influence of weak groups on polyelectrolyte mobilities</title><source>Wiley</source><creator>Sean, David ; Landsgesell, Jonas ; Holm, Christian</creator><creatorcontrib>Sean, David ; Landsgesell, Jonas ; Holm, Christian</creatorcontrib><description>The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201800346</identifier><identifier>PMID: 30645004</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Charging ; Computational modeling ; Configurations ; Crosslinking ; Electric potential ; Electrophoresis ; Electrophoretic mobility ; Inhomogeneity ; Ionization ; Lattice‐Boltzmann ; Localization ; Models, Chemical ; Molecular dynamics ; Molecular Dynamics Simulation ; Monomers ; Monte Carlo Method ; Polyelectrolytes ; Polyelectrolytes - chemistry ; Reaction ensemble ; Weak polyelectrolytes</subject><ispartof>Electrophoresis, 2019-03, Vol.40 (5), p.799-809</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</citedby><cites>FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</cites><orcidid>0000-0002-9264-2267 ; 0000-0002-9315-8522 ; 0000-0003-2739-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30645004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sean, David</creatorcontrib><creatorcontrib>Landsgesell, Jonas</creatorcontrib><creatorcontrib>Holm, Christian</creatorcontrib><title>Influence of weak groups on polyelectrolyte mobilities</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.</description><subject>Annealing</subject><subject>Charging</subject><subject>Computational modeling</subject><subject>Configurations</subject><subject>Crosslinking</subject><subject>Electric potential</subject><subject>Electrophoresis</subject><subject>Electrophoretic mobility</subject><subject>Inhomogeneity</subject><subject>Ionization</subject><subject>Lattice‐Boltzmann</subject><subject>Localization</subject><subject>Models, Chemical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monomers</subject><subject>Monte Carlo Method</subject><subject>Polyelectrolytes</subject><subject>Polyelectrolytes - chemistry</subject><subject>Reaction ensemble</subject><subject>Weak polyelectrolytes</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgitbq1aMsePGydZLZfOxRxC8oKKjnJd3Oymq6WZMu0n9vSmsPXjxlAk_eCS9jZxwmHEBckevjRAA3AFioPTbiUohcKIP7bARcYw4G5RE7jvEDAIqyKA7ZEYIqZLqNmHrsGjdQV1Pmm-yb7Gf2HvzQx8x3We_dihzVy5CGJWULP2tdu2wpnrCDxrpIp9tzzN7ubl9vHvLp0_3jzfU0r1GZMidTmkaAqLnlQiJKaUkgGK2LudRck0Y1A2y0tWKOUhgwtTVKay60kiRxzC43uX3wXwPFZbVoY03O2Y78ECvBdYkKE0704g_98EPo0u-SMmmRRi6SmmxUHXyMgZqqD-3ChlXFoVo3Wq0brXaNpgfn29hhtqD5jv9WmECxAd-to9U_cdXt9PlFGVniDxFNfs4</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Sean, David</creator><creator>Landsgesell, Jonas</creator><creator>Holm, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9264-2267</orcidid><orcidid>https://orcid.org/0000-0002-9315-8522</orcidid><orcidid>https://orcid.org/0000-0003-2739-310X</orcidid></search><sort><creationdate>201903</creationdate><title>Influence of weak groups on polyelectrolyte mobilities</title><author>Sean, David ; Landsgesell, Jonas ; Holm, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Charging</topic><topic>Computational modeling</topic><topic>Configurations</topic><topic>Crosslinking</topic><topic>Electric potential</topic><topic>Electrophoresis</topic><topic>Electrophoretic mobility</topic><topic>Inhomogeneity</topic><topic>Ionization</topic><topic>Lattice‐Boltzmann</topic><topic>Localization</topic><topic>Models, Chemical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monomers</topic><topic>Monte Carlo Method</topic><topic>Polyelectrolytes</topic><topic>Polyelectrolytes - chemistry</topic><topic>Reaction ensemble</topic><topic>Weak polyelectrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sean, David</creatorcontrib><creatorcontrib>Landsgesell, Jonas</creatorcontrib><creatorcontrib>Holm, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sean, David</au><au>Landsgesell, Jonas</au><au>Holm, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of weak groups on polyelectrolyte mobilities</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2019-03</date><risdate>2019</risdate><volume>40</volume><issue>5</issue><spage>799</spage><epage>809</epage><pages>799-809</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction‐ensemble Monte‐Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod‐like, flexible four‐arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice‐Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod‐like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash‐out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30645004</pmid><doi>10.1002/elps.201800346</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9264-2267</orcidid><orcidid>https://orcid.org/0000-0002-9315-8522</orcidid><orcidid>https://orcid.org/0000-0003-2739-310X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2019-03, Vol.40 (5), p.799-809
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_2179363765
source Wiley
subjects Annealing
Charging
Computational modeling
Configurations
Crosslinking
Electric potential
Electrophoresis
Electrophoretic mobility
Inhomogeneity
Ionization
Lattice‐Boltzmann
Localization
Models, Chemical
Molecular dynamics
Molecular Dynamics Simulation
Monomers
Monte Carlo Method
Polyelectrolytes
Polyelectrolytes - chemistry
Reaction ensemble
Weak polyelectrolytes
title Influence of weak groups on polyelectrolyte mobilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20weak%20groups%20on%20polyelectrolyte%20mobilities&rft.jtitle=Electrophoresis&rft.au=Sean,%20David&rft.date=2019-03&rft.volume=40&rft.issue=5&rft.spage=799&rft.epage=809&rft.pages=799-809&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201800346&rft_dat=%3Cproquest_cross%3E2187367312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3689-e898f202c1a1253355ae2308774d5717e736b03f7aa2d352808ca867712765e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187367312&rft_id=info:pmid/30645004&rfr_iscdi=true