Loading…
Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene
Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapi...
Saved in:
Published in: | ACS applied materials & interfaces 2019-02, Vol.11 (6), p.6166-6173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b22310 |